×

zbMATH — the first resource for mathematics

Condition, equilibration and pivoting in linear algebraic systems. (English) Zbl 0182.49002

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bauer, F. L.: Optimally scaled matrices. Num. Math.5, 73–87 (1963) · Zbl 0107.10501
[2] Bowdler, H. J., Martin, R. S., Peters, G., Wilkinson, J. H.: Solution of real and complex systems of linear equations. Num. Math.8, 217–234 (1966) (Handbook series). · Zbl 0158.33805
[3] Dekker, T. J.: Series AP 200 algorithms. Mathematisch Centrum, Amsterdam (1962). · Zbl 0171.27001
[4] Forsythe, G. E., Moler, C. B.: Computer solution of linear algebraic systems. Englewood Cliffs, N. J.: Prentice-Hall 1967. · Zbl 0154.40401
[5] Sluis, A. van der: Condition numbers and equilibration of matrices. Num. Math.14, 14–23 (1969) · Zbl 0182.48906
[6] —- Stability of solutions of linear algebraic systems. Num. Math.14, 246–251 (1970). · Zbl 0182.49001
[7] Wilkinson, J. H.: Error analysis of direct methods of matrix inversion. J. Ass. Comp. Mach.8, 281–330 (1961). · Zbl 0109.09005
[8] —- Rounding errors in algebraic processes. Notes on applied science, No. 32. London: Her Majesty’s Stationery Office 1963.
[9] —- Rundungsfehler. Berlin-Heidelberg-New York: Springer 1969
[10] —- The algebraic eigenvalue problem. London: Oxford University Press 1965 · Zbl 0258.65037
[11] —- The solution of ill-conditioned linear equations. In: Mathematical methods for digital computers, ed. by A. Ralston and H. S. Wilf, vol. 2, p. 65–93. New York: John Wiley 1967.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.