zbMATH — the first resource for mathematics

Physical states on a \(C^*\)-algebra. (English) Zbl 0183.14203

Full Text: DOI
[1] Aarnes, J. F., Quasi-states on C*-algebras. To appear. · Zbl 0212.15403
[2] Dauns, J. & Hofmann, K. H., Representations of rings by continuous sections. To appear inMem. Amer. Math. Soc.
[3] Dixmier, J.,Les algebres d’operateurs dans l’espace Hilbertien. Gauthier-Villars, Paris, 1957. · Zbl 0088.32304
[4] –,Les C *-algebres et leurs representations. Gauthier-Villars, Paris, 1964.
[5] Gleason, A. M., Measures on the closed subspaces of a Hilbert space.J. Math. Mech., 6 (1957), 885–893. · Zbl 0078.28803
[6] Kadison, R. V., Transformation of states in operator theory and dynamics.Topology, 3 (suppl. 2) (1965), 177–198. · Zbl 0129.08705
[7] –, On the additivity of the trace in finite factors.Proc. Nat. Acad. Sci. U.S.A., 41 (1955), 385–387. · Zbl 0064.36604
[8] Mackey, G. W.,Mathematical foundations of quantum mechanics. W. A. Benjamin, Inc. New York, 1963. · Zbl 0114.44002
[9] Murray, F. J. &von Neumann, J., On rings of operators II.Trans. Amer. Math. Soc., 41 (1937), 208–248. · Zbl 0017.36001
[10] Zaanen, A. C.,An introduction to the theory of integration. North Holland Publ. Co., Amsterdam, 1958. · Zbl 0081.27703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.