×

zbMATH — the first resource for mathematics

On the convergence of discrete approximations to the Navier-Stokes equations. (English) Zbl 0184.20103

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexandre Joel Chorin, The numerical solution of the Navier-Stokes equations for an incompressible fluid, Bull. Amer. Math. Soc. 73 (1967), 928 – 931. · Zbl 0168.46501
[2] Alexandre Joel Chorin, Numerical solution of the Navier-Stokes equations, Math. Comp. 22 (1968), 745 – 762. · Zbl 0198.50103
[3] A. Krzhivitski and O. A. Ladyzhenskaya, A grid method for the Navier-Stokes equations, Soviet Physics Dokl. 11 (1966), 212 – 213. · Zbl 0148.21704
[4] Roger Temam, Une méthode d’approximation de la solution des équations de Navier-Stokes, Bull. Soc. Math. France 96 (1968), 115 – 152 (French). · Zbl 0181.18903
[5] R. Temam, “Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires,” Arch. Rational Mech. Anal. (To appear.) · Zbl 0195.46001
[6] Hiroshi Fujita and Tosio Kato, On the Navier-Stokes initial value problem. I, Arch. Rational Mech. Anal. 16 (1964), 269 – 315. · Zbl 0126.42301
[7] O. A. Ladyzhenskaya, Mathematical Problems in the Dynamics of a Viscous Incompressible Flow, Fizmatgiz, Moscow, 1961; English transi., Gordon & Breach, New York, 1963. MR 27 #5034a, b.
[8] Milton Lees, Energy inequalities for the solution of differential equations, Trans. Amer. Math. Soc. 94 (1960), 58 – 73. · Zbl 0104.34903
[9] A. J. Chorin & O. Widlund, “On the convergence of relaxation methods.” (To appear.)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.