zbMATH — the first resource for mathematics

On the nonexistence of a surface of constant mean curvature with finite area and prescribed rectifiable boundary. (English) Zbl 0184.32802

Full Text: DOI
[1] Heinz, E., Über die Existenz einer Fläche konstanter mittlerer Krümmung bei vorgegebener Berandung. Math. Ann. 127, 258–287 (1954). · Zbl 0055.15303
[2] Heinz, E., Über Flächen mit eineindeutiger Projektion auf eine Ebene, deren Krümmungen durch Ungleichungen eingeschränkt sind. Math. Ann. 129, 451–454 (1955). · Zbl 0065.37201
[3] Heinz, E., An inequality of isoperimetric type for surfaces of constant mean curvature. Arch. Rational Mech. Anal. 33, 155–168 (1969). · Zbl 0176.51602
[4] Heinz, E., Ein Regularitätssatz für Flächen beschränkter mittlerer Krümmung. Nachr. Akad. Wiss. Göttingen, Math.-Phys. KI, Jahrgang 1969, 107–118. · Zbl 0192.58302
[5] Hildebrandt, S., Über Flächen konstanter mittlerer Krümmung. Math. Zeitschr., to appear. · Zbl 0183.39501
[6] Hildebrandt, S., On the plateauproblem for surfaces of constant mean curvature. Comm. Pure and Appl. Math., to appear. · Zbl 0181.38703
[7] Serrin, J., The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. Phil. Trans. Royal Soc. London A 264, 413–496 (1969). · Zbl 0181.38003
[8] Wente, H., An existence theorem for surfaces of constant mean curvature. Journ. of Math. Anal. and Appl. 26, 318–344 (1963). · Zbl 0181.11501
[9] Werner, H., Das Problem von Douglas für Flächen konstanter mittlerer Krümmung. Math. Ann. 133, 303–319 (1957). · Zbl 0077.34901
[10] Werner, H., The existence of surfaces of constant mean curvature with arbitrary Jordan curves as assigned boundary. Proc. Amer. Math. Soc. 11, 63–70 (1960). · Zbl 0089.37901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.