Una maggiorazione a priori relativa alle ipersuperfici minimali non parametriche. (Italian) Zbl 0184.32803


35B45 A priori estimates in context of PDEs
49Q05 Minimal surfaces and optimization


Zbl 0111.09302
Full Text: DOI


[1] De Giorgi, E., Maggiorazioni a priori relative alle ipersuperfici minimali. Atti del Convegno di Analisi Funzionale, Roma (1968). · Zbl 0194.42201
[2] Federer, H., & W. H. Fleming, Normal and integral currents. Ann. Math. 72 (1960). · Zbl 0187.31301
[3] Finn, R., A property of minimal surfaces. Proc. Nat. Acad. Sci. 39, (1953). · Zbl 0051.12504
[4] Finn, R., On equations of minimal surfaces type. Ann. of Math. 60 (1954). · Zbl 0058.32501
[5] Finn, R., New estimates for equations of minimal surface type. Arch. Rational Mech. Anal. 14 (1963). · Zbl 0133.04601
[6] Jenkins, H., & J. Serrin, Variational problems of minimal surface type, I. Arch. Rational Mech. Anal. 12 (1963). · Zbl 0122.39602
[7] Miranda, M., Disuguaglianze di Sobolev sulle ipersuperfici minimali. Rend. Sem. Mat. Univ. Padova 38 (1967). · Zbl 0175.11802
[8] Miranda, M., Una maggiorazione integrale per le curvature delle ipersuperfici minimali. Rend. Sem. Mat. Univ. Padova 38 (1967). · Zbl 0175.11803
[9] Miranda, M., Sul minimo dell’integrale del gradiente di una funzione. Ann. Scuola Norm. Sup. Pisa 19 (1965).
[10] Moser, J., On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 14 (1961). · Zbl 0111.09302
[11] Nitsche, J. C. C., On new results in the theory of minimal surfaces. Bull. Amer. Math. Soc. 71 (1965). · Zbl 0135.21701
[12] Serrin, J., A priori estimates for solutions of the minimal surface equation. Arch. Rational Mech. Anal. 14 (1963). · Zbl 0117.07304
[13] Serrin, J., Addendum to ?A priori estimates for solutions of the minimal surface equation?, Arch. Rational Mech. Anal. 28, 149-154 (1968). · Zbl 0157.18201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.