×

zbMATH — the first resource for mathematics

Demicontinuity, hemicontinuity and monotonicity. II. (English) Zbl 0184.36504

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arne Beurling and A. E. Livingston, A theorem on duality mappings in Banach spaces, Ark. Mat. 4 (1962), 405 – 411 (1962). · Zbl 0105.09301 · doi:10.1007/BF02591622 · doi.org
[2] Felix E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862 – 874. · Zbl 0127.31901
[3] Felix E. Browder, Continuity properties of monotone nonlinear operators in Banach spaces, Bull. Amer. Math. Soc. 70 (1964), 551 – 553. · Zbl 0123.10702
[4] Felix E. Browder, On a theorem of Beurling and Livingston, Canad. J. Math. 17 (1965), 367 – 372. · Zbl 0132.10602 · doi:10.4153/CJM-1965-037-2 · doi.org
[5] Felix E. Browder, Nonlinear accretive operators in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 470 – 476. · Zbl 0159.19905
[6] Tosio Kato, Demicontinuity, hemicontinuity and monotonicity, Bull. Amer. Math. Soc. 70 (1964), 548 – 550. · Zbl 0123.10701
[7] Tosio Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan 19 (1967), 508 – 520. · Zbl 0163.38303 · doi:10.2969/jmsj/01940508 · doi.org
[8] George J. Minty, on a ”monotonicity” method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038 – 1041. · Zbl 0124.07303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.