×

On non-singular transformations of a measure space. I, II. (English) Zbl 0185.11901


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arnold, L. K.: On σ-finite invariant measures. Doctoral Thesis, Brown University,June 1966.
[2] Beunel, A., Sur les mesures invariantes, Z. Wahrscheinlichkeitstheorie verw. Geb., 5, 300-303 (1966) · Zbl 0147.31302
[3] Chacon, R. V., A class of linear transformations, Proc. Amer. math. Soc., 15, 560-564 (1964) · Zbl 0168.11702
[4] Dye, H. A., On groups of measure preserving transformations I., Amer. J. Math., 81, 119-159 (1959) · Zbl 0087.11501
[5] Dye, H. A., On groups of measure preserving transformations II, Amer. J. Math., 85, 551-576 (1963) · Zbl 0191.42803
[6] Feller, W., An introduction to probability theory and its applications, Vol. II (1966), New York: Wiley, New York · Zbl 0138.10207
[7] Halmos, B. P.: Lectures on ergodic theory. Publications of the Mathematical Society of Japan 3, Tokyo 1956. · Zbl 0073.09302
[8] Jacobs, K.: Lecture notes on ergodic theory. Aarhus Universitet 1962/63. · Zbl 0196.31301
[9] Krieger, W., On non-singular transformations of a measure space II, Z. Wahrscheinlich-keitstheorie verw. Geb., 11, 98-119 (1969) · Zbl 0185.11901
[10] Moore, C.: Invariant measures on product spaces, Proc. Fifth Berkeley Sympos. math.Statist. Probability II, Part 2, 447-459 (1967).
[11] Von Neumann, J., On rings of operators III, Ann. of Math., II. Ser., 41, 94-161 (1940) · Zbl 0023.13303
[12] Ornstein, D., On invariant measures, Bull. Amer. math. Soc., 66, 297-300 (1960) · Zbl 0154.30502
[13] Powers, R. T., Representations of uniformly hyperfinite algebras and their associatedvon Neumann rings, Ann. of Math., II. Ser., 86, 138-171 (1967) · Zbl 0157.20605
[14] Pukánszky, L., Some examples of factors, Publ. math., Debrecen, 4, 135-156 (195556) · Zbl 0070.34401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.