×

zbMATH — the first resource for mathematics

Über die Lösung regulärer koerzitiver Rand- und Eigenwertaufgaben mit dem Galerkinverfahren. (German) Zbl 0185.41501

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] AGMON, S.: Lectures on elliptic boundary value problems. Toronto New York London: D. Van Norstrand Company, Inc. 1965. · Zbl 0142.37401
[2] ANSELONE, P.M., T.W. PALMER: Spectral analysis of collectively compact, strongly convergent operator sequences. Pacific J. Math.25, 423-431 (1968). · Zbl 0157.45203
[3] ATKINSON, K.E.: The numerical solution of the eigenvalue problem for compact integral operators. Trans. Am. Math. Soc.129, 458-465 (1967). · Zbl 0177.18803
[4] COLLATZ, L.: Eigenwertprobleme und ihre numerische Behandlung. Leipzig: Akademische Verlagsgesellschaft Becker & Erler Kom.-Ges. 1945. · Zbl 0061.18102
[5] COLLATZ, L.: The numerical treatment of differential equations. Berlin Heidelberg New York: Springer-Verlag 1966. · Zbl 0173.17702
[6] FICHERA, G.: Linear elliptic differential systems and eigenvalue problems. Berlin Heidelberg New York: Springer-Verlag 1965. · Zbl 0138.36104
[7] FICHERA, G.: Il calcolo degli autovalori. Atti dell’ VIII Congresso dell’ Unione Matematica Italiana, Trieste 1967.
[8] GOULD, S.H.: Variational methods for eigenvalue problems. Toronto: University of Toronto Press 1957. · Zbl 0077.09603
[9] GRIGORIEFF, R.D.: Approximation von Eigenwertproblemen und Gleichungen zweiter Art in Hilbertschen Räumen. Erscheint in Math. Ann. · Zbl 0177.41201
[10] GRIGORIEFF, R.D.: Über die Konvergenz des Galerkinverfahrens zur Lösung von Eigenwertaufgaben. Erscheint in ZAMM.
[11] HILDEBRANDT, S.: Über die Lösung nichtlinearer Eigenwertaufgaben mit dem Galerkinverfahren. Math. Z.101, 255-264 (1967). · Zbl 0155.46402 · doi:10.1007/BF01115104
[12] HILDEBRANDT, S., E. WIENHOLTZ: Constructive proofs of representation theorems in separable Hilbert space. Comm. Pure Appl. Math.17, 369-373 (1964). · Zbl 0131.13401 · doi:10.1002/cpa.3160170309
[13] KANTOROWITSCH, L.W., G.P. AKILOW: Funktionalanalysis in normierten Räumen. Berlin: Akademie-Verlag 1964.
[14] KANTOROWITSCH, L.W., W.I. KRYLOW: Näherungsmethoden der höheren Analysis. Berlin: Deutscher Verlag der Wissenschaften 1956.
[15] MICHLIN, S.G.: Variationsmethoden der mathematischen Physik. Berlin: Akademie-Verlag 1962. · Zbl 0098.36909
[16] MIKHLIN, S.G., K.L. SMOLITSKIY: Approximate methods for solution of differential and integral equations. New York: American Elsevier Publishing Company Inc. 1967.
[17] PETRYSHYN, W.V.: Direct and iterative methods for the solution of linear operator equations in Hilbert space. Trans. Amer. Math. Soc.105, 136-175 (1962). · Zbl 0106.09301 · doi:10.1090/S0002-9947-1962-0145651-8
[18] PETRYSHYN, W.V.: On a class of K-p.d. and non-K-p.d. operators and operator equations. J. Math. Anal. Appl.10, 1-24 (1965). · Zbl 0135.36503 · doi:10.1016/0022-247X(65)90142-3
[19] PETRYSHYN, W.V.: Constructional proof of Lax-Milgram lemma and its application to non-K-p.d. abstract and differential operator equations. J. Siam Num. Anal.2, 404-420 (1965). · Zbl 0139.09002
[20] PETRYSHYN, W.V.: Projection methods in nonlinear numerical functional analysis. J. Math. Mech.17, 353-372 (1967). · Zbl 0162.20202
[21] PETRYSHYN, W.V.: On the eigenvalue problem Tu-?Su=0 with unbounded and nonsymmetric operators T and S. Philos. Trans. Roy. Soc. London262, 413-458 (1968). · Zbl 0152.33804 · doi:10.1098/rsta.1968.0001
[22] STUMMEL, F.: Rand- und Eigenwertaufgaben in Sobolewschen Räumen. Berlin Heidelberg New York: Springer-Verlag 1969. · Zbl 0177.42402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.