×

zbMATH — the first resource for mathematics

Free states of the canonical anticommutation relations. (English) Zbl 0186.28301

Keywords:
quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Araki, H.: A lattice of von Neumann algebras associated with the quantum theory of a free Bose field. J. Math. Phys.4, 1343–1362 (1963). · Zbl 0132.43805 · doi:10.1063/1.1703912
[2] – Woods, E. J.: A classification of factors. To appear. · Zbl 0206.12901
[3] Balslev, E., Verbeure, A.: States on Clifford algebras. Commun. Math. Phys.7, 55–76 (1968). · Zbl 0155.32305 · doi:10.1007/BF01651218
[4] —- Manuceau, J., Verbeure, A.: Representations of anticommutation relations and Bogulioubov transformations. Commun. Math. Phys.8, 315–326 (1968). · Zbl 0173.29706 · doi:10.1007/BF01646271
[5] Bures, D. H.: Certain factors constructed as infinite tensor products. Comp. Math.15, 169–191 (1963). · Zbl 0144.37803
[6] Combes, F.: Sur les etats factoriels d’une C*-algèbres. Compt. Rend. Ser. A–B,265, 736–739 (1967). · Zbl 0171.11504
[7] Cook, J. M.: The mathematics of second quantization. Trans. Am. Math. Soc.80, 470–501 (1955). · doi:10.1090/S0002-9947-1955-0076206-8
[8] Dell’Antonio, G. F.: Structure of the algebras of some free systems. Commun. Math. Phys.9, 81–117 (1968). · Zbl 0159.29002 · doi:10.1007/BF01645837
[9] Dixmier, J.: Les algèbres d’opérateurs dans l’espace hilbertien. Paris: Gauthier-Villars 1957. · Zbl 0088.32304
[10] —- Les C*-algèbres et leurs représentations. Paris: Gauthier-Villars 1964.
[11] Glimm, J.: On a certain class of operator algebras. Trans. Am. Math. Soc.95, 318–340 (1960). · Zbl 0094.09701 · doi:10.1090/S0002-9947-1960-0112057-5
[12] —- Kadison, R. V.: Unitary operators inC*-algebras. Pacific J. Math.10, 547–556 (1960). · Zbl 0152.33001
[13] Guichardet, M. A.: Produits tensoriels infinis et représentations des relations d’anticommutations. Ann. Sci. Ecole Norm. Super.83, 1–52 (1966). · Zbl 0154.38905
[14] Kadison, R. V.: Isomorphisms of factors of infinite type. Canad. J. Math.7, 322–327 (1955). · Zbl 0064.36603 · doi:10.4153/CJM-1955-035-3
[15] —- Unitary invariants for representations of operator algebras. Ann. Math.66, 304–379 (1957). · Zbl 0084.10705 · doi:10.2307/1970002
[16] Kakutani, S.: On equivalence of infinite product measures. Ann. Math.49, 214–224 (1948). · Zbl 0030.02303 · doi:10.2307/1969123
[17] Kaplansky, I.: A theorem on rings of operators. Pacific J. Math.1, 227–232 (1951). · Zbl 0043.11502
[18] Manuceau, J., Rocca, F., Testard, D.: On the product form of quasi-free states. To appear. · Zbl 0172.27303
[19] Moore, C. C.: Invariant measures on product spaces. Proc. of the Fifth Berkeley Symposium on Math. Stat. and Probab. Vol. II, part II, 447–459 (1967). · Zbl 0208.06801
[20] Murray, F. J., von Neumann, J.: On rings of operators. Ann. Math.37, 116–229 (1936). · Zbl 0014.16101 · doi:10.2307/1968693
[21] von Neumann, J.: Charakterisierung des Spektrums eines integralen Operators. Actualités Scient. et Ind., No. 229 (1935). · Zbl 0011.30801
[22] Powers, R. T.: Representations of the canonical anticommutation relations. Thesis Princeton Univ (1967). · Zbl 0157.20605
[23] —- Representations of uniformly hyperfinite algebras and their associated rings. Ann. Math.86, 138–171 (1967). · Zbl 0157.20605 · doi:10.2307/1970364
[24] Rideau, G.: On some representations of the anticommutation relations. Commun. Math. Phys.9, 229–241 (1968). · Zbl 0194.29001 · doi:10.1007/BF01645688
[25] Segal, I. E.: Distributions in Hilbert space and canonical systems of operators. Trans. Am. Math. Soc.88, 12–41 (1958). · Zbl 0099.12104 · doi:10.1090/S0002-9947-1958-0102759-X
[26] Shale, D., Stinespring, W. F.: States on the Clifford algebra. Ann. Math.80, 365–381 (1964). · Zbl 0178.49301 · doi:10.2307/1970397
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.