×

Construction of Gauss-Christoffel quadrature formulas. (English) Zbl 0187.10603


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Donald G. Anderson, Gaussian quadrature formulae for \int \(_{0}\)\textonesuperior -\?\?(\?)\?(\?)\?\?, Math. Comp. 19 (1965), 477 – 481. · Zbl 0132.36803
[2] S. Chandrasekhar, Radiative Transfer, Oxford University Press, 1950. · Zbl 0037.43201
[3] E. B. Christoffel, ”Sur une classe particulière de fonctions entières et de fractions continues,” Ann. Mat. Pura Appl., (2), v. 8, 1877, pp. 1-10.
[4] Philip J. Davis, Interpolation and approximation, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1963.
[5] Philip J. Davis and Philip Rabinowitz, Ignoring the singularity in approximate integration, J. Soc. Indust. Appl. Math. Ser. B Numer. Anal. 2 (1965), 367 – 383. · Zbl 0141.13901
[6] L. Fejér, ”Mechanische Quadraturen mit positiven Cotesschen Zahlen,” Math. Z., v. 37, 1933, pp. 287-309. · JFM 59.0261.03
[7] C. F. Gauss, ”Methodus nova integralium valores per approximationem inveniendi,” Comment. Soc. Regiae Sci. Gottingensis Recentiores, v. 3, 1816; Werke, Vol. 3, pp. 163-196.
[8] Walter Gautschi, On inverses of Vandermonde and confluent Vandermonde matrices. II, Numer. Math. 5 (1963), 425 – 430. · Zbl 0115.34303
[9] Walter Gautschi, Numerical quadrature in the presence of a singularity, SIAM J. Numer. Anal. 4 (1967), 357 – 362. · Zbl 0279.65024
[10] W. Gautschi, ”Algorithm, Gaussian quadrature formulas,” Comm. ACM. (To appear.) · Zbl 0213.16701
[11] G. H. Golub & J. H. Welsch, Calculation of Gauss Quadrature Rules, Comput. Sci. Dept. Tech. Rep. No. CS 81, Stanford University, Calif., 1967. · Zbl 0179.21901
[12] W. Gröbner, ”Orthogonale Polynomsysteme die gleichzeitig mit \( f(x)\) auch deren Ableitung \( f'(x)\) approximieren,” Funktionalanalysis, Approximationstheorie, Numerische Mathematik, edited by L. Collatz, G. Meinardus, and H. Unger, Birkhäuser, Basel, 1967, pp. 24-32. · Zbl 0188.14001
[13] Bernard R. Kripke, Best approximation with respect to nearby norms, Numer. Math. 6 (1964), 103 – 105. · Zbl 0128.34302
[14] L. G. Kruglikova and V. I. Krylov, A numerical Fourier transform, Dokl. Akad. Nauk BSSR 5 (1961), 279 – 283 (Russian). · Zbl 0105.10801
[15] Справочная книга по численному интегрированию, Издат. ”Наука”, Мосцощ, 1966 (Руссиан).
[16] Philip Rabinowitz, Gaussian integration in the presence of a singularity, SIAM J. Numer. Anal. 4 (1967), 191 – 201. · Zbl 0183.18102
[17] John R. Rice, A theory of condition, SIAM J. Numer. Anal. 3 (1966), 287 – 310. · Zbl 0143.37101
[18] J. R. Rice & S. Rosen, ”NAPSS–a numerical analysis problem solving system,” Proc. ACM 21st Natl. Conf., Los Angeles, Calif. (August 1966), Thompson, Washington, D. C., 1966, pp. 51-56.
[19] H. Rutishauser, ”On a modification of the \( QD\)-algorithm with Graeffe-type convergence,” Proc. IFIP Congress 62, pp. 93-96, North-Holland, Amsterdam, 1963. · Zbl 0135.37301
[20] T. J. Stieltjes, Quelques recherches sur la théorie des quadratures dites mécaniques, Ann. Sci. École Norm. Sup. (3) 1 (1884), 409 – 426 (French). · JFM 16.0242.02
[21] A. H. Stroud and Don Secrest, Gaussian quadrature formulas, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. · Zbl 0156.17002
[22] Gabor Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23. Revised ed, American Mathematical Society, Providence, R.I., 1959. · Zbl 0305.42011
[23] John Todd, The condition of the finite segments of the Hilbert matrix, Contributions to the solution of systems of linear equations and the determination of eigenvalues, National Bureau of Standards Applied Mathematics Series No. 39, U. S. Government Printing Office, Washington, D. C., 1954, pp. 109 – 116. · Zbl 0058.01003
[24] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. · Zbl 0258.65037
[25] Ion Zamfirescu, An extension of Gauss’ method for the calculation of improper integrals, Acad. R. P. Romîne Stud. Cerc. Mat. 14 (1963), 615 – 631 (Romanian, with Russian and French summaries). · Zbl 0235.65022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.