×

zbMATH — the first resource for mathematics

Nonstationary plane flow of viscous and ideal fluids. (English) Zbl 0187.49508

Keywords:
fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Friedman, A., Partial Differential Equations of Parabolic Type. Englewood Cliffs, N.J.: Prentice-Hall 1964. · Zbl 0144.34903
[2] Golovkin, K.K., About Vanishing Viscosity in the Cauchy Problem for the Equations of Fluid Mechanics. Memoirs of the V.A. Steklov Institute XCII, Moscow, USSR, 1966.
[3] Hartman, P., Ordinary Differential Equations. New York: Wiley 1964. · Zbl 0125.32102
[4] Il’in, A.M., & A.S. Kalashnikov, & O.A. Olenik, Linear equations of the second order of parabolic type. Russian Mathematical Surveys 17, No. 3 (1962). · Zbl 0108.28401 · doi:10.1070/RM1962v017n03ABEH004115
[5] Leray, J., Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l’hydrodynamique. J. Math. Pures Appl., Série 9, 12 (1933). · Zbl 0006.16702
[6] Wolibner, W., Un theorème sur l’existence du movement plan d’un fluide parfait, homogène, incompressible, pendant un temps infiniment long. Math. Z. 37 (1933). · JFM 59.1447.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.