×

zbMATH — the first resource for mathematics

Subalgebras of \(C^ *\)-algebras. (English) Zbl 0194.15701

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arveson, W. B., On subalgebras ofC *-algebras.Bull. Amer. Math. Soc., 75 (1969), 790–794. · Zbl 0212.15402 · doi:10.1090/S0002-9904-1969-12293-7
[2] Brown, A. &Halmos, P. R., Algebraic properties of Toeplitz operators.J. Reine Angew. Math., 213 (1963), 89–102. · Zbl 0116.32501
[3] Coburn, L. A., TheC *-algebra generated by an isometry.Bull. Amer. Math. Soc., 73 (1967), 722–726. · Zbl 0153.16603 · doi:10.1090/S0002-9904-1967-11845-7
[4] Dixmier, J.,Les C *-algèbres et leurs representations. Gauthier-Villars, Paris, 1964. · Zbl 0152.32902
[5] –,Les algèbres d’operateurs dans l’espace Hilbertien. Gauthier-Villars, Paris, 1957. · Zbl 0088.32304
[6] Dunford, N. &Schwartz, J. T.,Linear operators, part I. Interscience, New York, 1958. · Zbl 0084.10402
[7] Glimm, J., On a certain class of operator algebras.Trans. Amer. Math. Soc., 95 (1960), 318–340. · Zbl 0094.09701 · doi:10.1090/S0002-9947-1960-0112057-5
[8] –, A Stone-Weierstrass theorem forC *-algebras.Ann. of Math., 72 (1960), 216–244. · Zbl 0097.10705 · doi:10.2307/1970133
[9] Halmos, P. R.,A Hilbert space problem book, Van Nostrand., Princeton, 1967. · Zbl 0144.38704
[10] Helson, H.,Lectures on invariant subspaces. Academic Press, New York, 1964. · Zbl 0119.11303
[11] Hoffman, K.,Banach spaces of analytic functions. Prentice-Hall, Englewood Cliffs, 1962. · Zbl 0117.34001
[12] Ionescu-Tulcea, A. &Ionescu-Tulcea C., On the lifting property (1).J. Math. Anal. Appl., 3 (1961), 537–546. · Zbl 0122.11604 · doi:10.1016/0022-247X(61)90075-0
[13] Kadison, R. V., A generalized Schwarz inequality and algebraic invariants for operator algebras.Ann. of Math., 56 (1952), 494–503. · Zbl 0047.35703 · doi:10.2307/1969657
[14] –, THe trace in finite operator algebras.Proc. Amer. Math. Soc., 12 (1961), 973–977. · Zbl 0103.08701 · doi:10.1090/S0002-9939-1961-0139961-2
[15] Kelley, J., Namioka, I., and co-authors,Linear topological spaces. Van Nostrand, Princeton, 1963.
[16] Phelps, R. R.,Lectures on Choquet’s theorem. Van Nostrand, Princeton, 1966. · Zbl 0135.36203
[17] Rickart, C. E.,Banach algebras. Van Nostrand. Princeton, 1960.
[18] Riesz, F. &Sz.-Nagy, B.,Functional analysis. Frederick Ungar, New York, 1955. · Zbl 0070.10902
[19] Rudin, W., Boundary values of continuous analytic functions.Proc. Amer. Math. Soc., 7 (1956), 808–811. · Zbl 0073.29701 · doi:10.1090/S0002-9939-1956-0081948-0
[20] Sarason, D. E., On spectral sets having connected complement.Acta Sci. Math. (Szeged), 26 (1956), 289–299. · Zbl 0145.39302
[21] –, A note on the Volterra operator.J. Math. Anal. Appl., 12 (1965), 244–246. · Zbl 0138.38801 · doi:10.1016/0022-247X(65)90035-1
[22] –, Generalized interpolation inH Trans. Amer. Math. Soc., 127 (1967), 179–203.
[23] Stinespring, W. F., Positive functions onC *-algebras.Proc. Amer. Math Soc., 6 (1955), 211–216. · Zbl 0064.36703
[24] Størmer, E., Positive linear maps of operator algebras.Acta Math., 110 (1963), 233–278. · Zbl 0173.42105 · doi:10.1007/BF02391860
[25] Sz.-Nagy, B.,Extensions of linear transformations in Hilbert space, which extend beyond this space. Appendix to [18].
[26] Sz.-Nagy, B., &Foias, C., Sur les contractions de l’espace de Hilbert VIII.Acta Sci. Math. (Szeged), 25 (1964), 38–71. · Zbl 0125.06604
[27] Takesaki, M., A note on the cross-norm of the direct product of operator algebra.Kodai Math. Seminar Reports, 10 (1958), 137–140. · Zbl 0086.09901 · doi:10.2996/kmj/1138844027
[28] Topping, D., UHF algebras are singly generated.Math. Scand., 22 (1968), 224–226. · Zbl 0172.41303
[29] Rosenberg, A., The number of irreducible representations of simple rings with no minimal ideals.Amer. J. Math. 75 (1953), 523–530. · Zbl 0053.25903 · doi:10.2307/2372501
[30] Arveson, W. B., Unitary invariants for compact operators.Bull. Amer. Math. Soc., 76 (1970) (to appear). · Zbl 0196.14304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.