×

zbMATH — the first resource for mathematics

Axisymmetric buckling of hollow spheres and hemispheres. (English) Zbl 0194.26804

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Theory of Elastic Stability, McGraw-Hill, New York, 1936.
[2] von Kármán, J. Aero. Sci. 7 pp 43– (1939) · doi:10.2514/8.1019
[3] Tsien, J. Aero. Sci. 9 pp 373– (1942) · doi:10.2514/8.10911
[4] On the minimum buckling load for spherical shells, von Kármán Anniversary Volume, Calif. Inst. Tech., Pasadena, 1941, pp. 258–272.
[5] Nonlinear buckling of a spherical shell, Thesis, New York University, 1953.
[6] Gabril’iants, Prikl. Math. Meh. 25 pp 1091– (1961)
[7] J. Appl. Math. Mech. 25 pp 1629– (1961)
[8] Koga, Int. J. Solids and Structures 5 pp 679– (1969)
[9] The nonlinear buckling problem of a complete spherical shell under uniform external pressure, Technological Univ., Lab. of Eng. Mech., Rep. No. 412, Delft, 1968.
[10] Thompson, Proc, Koninkl. Nederl. Akad. van Wet., Amsterdam, Sec. B. 6 pp 295– (1964)
[11] Reiss, J. Aero. Sci. 24 pp 533– (1957) · doi:10.2514/8.3893
[12] Theory of Plates and Shells, McGraw-Hill, New York, 1940. · JFM 66.1049.02
[13] Bromberg, Q. Appl. Math. 3 pp 246– (1945)
[14] Spherical Harmonics, Dover, New York, 1948. · Zbl 0032.27602
[15] Numerical Methods for Two Point Boundary Value Problems, Ginn-Blaisdell, Waltham Mass., 1968.
[16] Bifurcation theory for systems with applications to the buckling of thin spherical shells, Ph.D. Thesis, California Institute of Technology, to appear in June 1970.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.