×

Random measures and motions of point processes. (English) Zbl 0194.49204


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Billingsley, P.: Convergence of probability measures. New York: John Wiley and Sons, Inc. 1968. · Zbl 0172.21201
[2] Bourbaki, N.: Intégration, chap. 1-4. Paris: Hermann 1965. · Zbl 0136.03404
[3] Dugundji, J.: Topology. Boston: Allyn and Bacon Inc. 1965.
[4] Dyson, F.: The dynamics of a disordered linear chain. Phys. Review II. Ser.92, 1331-1338 (1958). · Zbl 0052.23704
[5] Foguel, S. R.: Existence of invariant measures for Markov processes II. Proc. Amer. math. Soc.17, 387-389 (1966). · Zbl 0168.16405
[6] Harris, T. E.: Diffusion with ?collisions? between particles. J. appl. Probab.2, 323-338 (1965). · Zbl 0139.34804
[7] ?: Counting measures, monotone random set functions. Z.Wahrscheinlichkeitstheorie verw. Geb.10, 102-119(1968). · Zbl 0165.18902
[8] Holley, R.: A class of interactions in an infinite particle system. (To appear.) · Zbl 0219.60054
[9] Jepsen, D. W.: Dynamics of a simple many-body system of hard rods. J. math. Phys.6, 405-413 (1965). · Zbl 0129.43607
[10] Kaplan, E. L.: Transformations of stationary random sequences. Math. Scand.3, 127-149 (1955). · Zbl 0065.11503
[11] Kerstan, J., Matthes, K.: Generalization of a theorem of Palm-Khinchin (Russian). Ukrain. mat. ?urn.17, 29-36 (1965). · Zbl 0149.13801
[12] Lieb, E. H., Mattis, D. C.: Mathematical physics in one dimension. New York: Academic Press 1966.
[13] Loève, M.: Probability theory, third ed. Princeton: D. Van Nostrand Co., Inc. 1963. · Zbl 0095.12201
[14] Logan, B. A.: Stationary random measures. Thesis, U. of Southern California, 1970.
[15] Matthes, K.: StationÄre zufÄllige Punktfolgen. I. J.-ber. Deutsch. Math.-Verein.66, 66-79 (1963). See also part II by J. Kerstan and K. Matthes, ibid.66, 106-118 (1964).
[16] Mecke, J.: StationÄre zufÄllige Masse auf lokalkompakten Abelschen Gruppen. Z. Wahrscheinlichkeitstheorie verw. Geb.9, 36-58 (1967). · Zbl 0164.46601
[17] Neveu, J.: Mathematical foundations of the calculus of probability. San Francisco: Holden-Day Inc. 1965. · Zbl 0137.11301
[18] ?: Sur la structure des processus ponctuels stationnaires. C. r. Acad. Sci. Paris267, A561?A564 (1968). · Zbl 0164.19102
[19] Parthasarathy, K. R.: Probability measures on metric spaces. New York: Academic Press 1967. · Zbl 0153.19101
[20] Ryll-Nardzewski, C.: Remarks on processes of calls. Proc. Fourth Berkeley Sympos., math. Statist. Probab.2, 455-465 (1961). · Zbl 0104.11305
[21] Skorohod, A. V.: Limit theorems for stochastic processes. Theor. Probab. Appl.1, 261-290 (1956).
[22] Slivnyak, I. M.: Some properties of stationary streams of homogeneous random events (Russian). Teor. Verojatn. Primen.7, 347-352 (1962).
[23] Spitzer, F.: Random processes defined through the interaction of an infinite particle system. Proc. International Symposium at McMaster Univ., Canada, April, 1968, 201-223. Lecture Notes in Mathematics No. 89. Berlin-Heidelberg-New York: Springer 1969.
[24] ?: Uniform motion with elastic collision of an infinite particle system. J. Math. Mech,18, 973-990 (1969). · Zbl 0184.21102
[25] ? Interaction of Markov processes. (To appear.)
[26] Stone, C.: On a theorem of Dobrushin. Ann. math. Statistics39, 1391-1401 (1968). · Zbl 0269.60045
[27] Waldenfels, W. von: Charakterische Funktionale zufÄllige Masse. Z. Wahrscheinlichkeitstheorie verw. Geb.10, 279-283 (1968). · Zbl 0177.45001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.