×

zbMATH — the first resource for mathematics

Strongly negligible sets in Frechet manifolds. (English) Zbl 0195.53602

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515 – 519. · Zbl 0137.09703
[2] R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200 – 216. · Zbl 0152.12601
[3] R. D. Anderson, On a theorem of Klee, Proc. Amer. Math. Soc. 17 (1966), 1401 – 1404. · Zbl 0152.12502
[4] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365 – 383. · Zbl 0148.37202
[5] R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771 – 792. · Zbl 0189.12402
[6] R. D. Anderson, David W. Henderson, and James E. West, Negligible subsets of infinite-dimensional manifolds, Compositio Math. 21 (1969), 143 – 150. · Zbl 0185.50803
[7] C. Bessaga, Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 27 – 31 (English, with Russian summary). · Zbl 0151.17703
[8] C. Bessaga and A. Pełczyński, Some remarks on homeomorphisms of \?-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 265 – 270. · Zbl 0103.32801
[9] James Eells Jr. and Nicolaas H. Kuiper, Homotopy negligible subsets, Compositio Math. 21 (1969), 155 – 161. · Zbl 0181.51401
[10] M. Ĭ. Kadec\(^{\prime}\), Topological equivalence of all separable Banach spaces, Dokl. Akad. Nauk SSSR 167 (1966), 23 – 25 (Russian).
[11] Victor L. Klee Jr., Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10 – 43. · Zbl 0050.33202
[12] Nicolaas H. Kuiper and Dan Burghelea, Hilbet manifolds, preprint. · Zbl 0195.53501
[13] Nicole Moulis, Sur les variétés Hilbertiennes et les fonctions non dégénérées, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math. 30 (1968), 497 – 511 (French). · Zbl 0167.50204
[14] Bor-luh Lin, Two topological problems concerning infinite-dimensional normed linear spaces, Trans. Amer. Math. Soc. 114 (1965), 156 – 175. · Zbl 0133.06603
[15] Peter Renz, Smooth extensions and extractions in infinite-dimensional Banach spaces, Dissertation, University of Washington, Seattle, Wash., 1968.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.