×

zbMATH — the first resource for mathematics

Semigruppi di crescenza n. (Italian) Zbl 0198.16801

PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] G. Da Prato - U. Mosco , Semigruppi Distribuzioni Analitici , Annali Scuola Normale Superiore di Pisa , XIX ( 1965 ), 367 - 396 . Numdam | MR 185432 | Zbl 0198.47202 · Zbl 0198.47202 · numdam:ASNSP_1965_3_19_3_367_0 · eudml:83353
[2] G. Da Prato - U. Mosco , Regolarizzazione dei semigruppi Distribuzione Analitici , Annali Scuola Normale Superiore di Pisa , XIX ( 1965 ) 563 - 576 . Numdam | MR 203492 | Zbl 0198.47203 · Zbl 0198.47203 · numdam:ASNSP_1965_3_19_4_563_0 · eudml:83364
[3] N. Dunford - J.T. Schwartz , Linear Operators I - Interscience - 1958 . Zbl 0084.10402 · Zbl 0084.10402
[4] W. Feller , On the generation of unbounded semi-groups of bounded linear operators , Annals of Math . ( 2 ) 58 ( 1953 ) 166 - 174 . MR 55572 | Zbl 0050.34201 · Zbl 0050.34201 · doi:10.2307/1969826
[5] E. Hille - R.S. Phillips - Functional Analysis and Semi-groups , Amer. Math. Soc. Coll. Pub. Vol. XXXI . MR 89373 | Zbl 0078.10004 · Zbl 0078.10004 · www.ams.org
[6] J.L. Lions - Les semi-groupes distributions , Portugaliae Math. 19 ( 1960 ), 141 - 164 . Article | MR 143045 | Zbl 0103.09001 · Zbl 0103.09001 · eudml:114836
[7] K. Yosida , On the differentiability and the representation of one-parameter semi-groups of linear operators , J., Math. Soc. Japan I ( 1948 ) 15 - 21 . Article | MR 28537 | Zbl 0037.35302 · Zbl 0037.35302 · doi:10.2969/jmsj/00110015 · www.journalarchive.jst.go.jp
[8] K. Yosida , On the differentiability of semi-groups of linear operators Proc. Japan Acad. 34 ( 1958 ), 337 - 340 . Article | MR 98990 | Zbl 0083.11003 · Zbl 0083.11003 · doi:10.3792/pja/1195524633 · minidml.mathdoc.fr
[9] K. Yosida , Functional Analysis , Springer-Verlag ( 1965 ). · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.