×

zbMATH — the first resource for mathematics

On rates of convergence for the invariance principle. (English) Zbl 0201.50902

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kai Lai Chung, On the maximum partial sums of sequences of independent random variables, Trans. Amer. Math. Soc. 64 (1948), 205 – 233. · Zbl 0032.17102
[2] Monroe D. Donsker, An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc., No. 6 (1951), 12. · Zbl 0042.37602
[3] J. L. Doob, Heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Statistics 20 (1949), 393 – 403. · Zbl 0035.08901
[4] P. Erdös and M. Kac, On certain limit theorems of the theory of probability, Bull. Amer. Math. Soc. 52 (1946), 292 – 302. · Zbl 0063.01274
[5] William Feller, An introduction to probability theory and its applications. Vol. II, John Wiley & Sons, Inc., New York-London-Sydney, 1966. · Zbl 0077.12201
[6] G. A. Hunt, Markoff processes and potentials. I, II, Illinois J. Math. 1 (1957), 44 – 93, 316 – 369. · Zbl 0100.13804
[7] Michel Loève, Probability theory, Third edition, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1963. · Zbl 0095.12201
[8] Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory, Teor. Veroyatnost. i Primenen. 1 (1956), 177 – 238 (Russian, with English summary). · Zbl 0075.29001
[9] Исследования по теории случайных процессов (Стохастические дифференциал\(^{\приме}\)ные уравнения и предел\(^{\приме}\)ные теоремы для процессов Маркова), Издат. Киев. Унив., Киев, 1961 (Руссиан). А. В. Скороход, Студиес ин тхе тхеоры оф рандом процессес, Транслатед фром тхе Руссиан бы Сцрипта Течница, Инц, Аддисон-Щеслеы Публишинг Цо., Инц., Реадинг, Масс., 1965.
[10] Bengt von Bahr and Carl-Gustav Esseen, Inequalities for the \?th absolute moment of a sum of random variables, 1\le \?\le 2, Ann. Math. Statist 36 (1965), 299 – 303. · Zbl 0134.36902 · doi:10.1214/aoms/1177700291 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.