×

zbMATH — the first resource for mathematics

An odd theorem. (English) Zbl 0203.25301

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Richard W. Cottle and George B. Dantzig, Complementary pivot theory of mathematical programming, Linear Algebra and Appl. 1 (1968), no. 1, 103 – 125. · Zbl 0155.28403
[2] B. Curtis Eaves, Linear complementarity problem in mathematical programming, Doctoral Dissertation, Stanford University, Stanford, Calif., 1969.
[3] C. E. Lemke, Bimatrix equilibrium points and mathematical programming, Management Sci. 11 (1964/1965), 681 – 689. · Zbl 0139.13103
[4] C. E. Lemke and J. T. Howson Jr., Equilibrium points of bimatrix games, J. Soc. Indust. Appl. Math. 12 (1964), 413 – 423. · Zbl 0128.14804
[5] K. G. Murty, On the number of solutions to the complementary quadratic programming problem, Doctoral Dissertation, Engineering Science, University of California, Berkeley, Calif., 1968.
[6] T. Hansen, On the approximation of a competitive equilibrium, Ph.D. Dissertation, Yale University, New Haven, Conn., 1968.
[7] Herbert E. Scarf, The core of an \? person game, Econometrica 35 (1967), 50 – 69. · Zbl 0183.24003
[8] Herbert Scarf, The approximation of fixed points of a continuous mapping, SIAM J. Appl. Math. 15 (1967), 1328 – 1343. · Zbl 0153.49401
[9] Daniel I. A. Cohen, On the Sperner lemma, J. Combinatorial Theory 2 (1967), 585 – 587. · Zbl 0163.18104
[10] Harold W. Kuhn, Simplicial approximation of fixed points, Proc. Nat. Acad. Sci. U.S.A. 61 (1968), 1238 – 1242. · Zbl 0191.54904
[11] H. W. Kuhn, Some combinatorial lemmas in topology, IBM J. Res. Develop. 4 (1960), 508 – 524. · Zbl 0109.15603
[12] L. S. Pontryagin, Osnovy Kombinatornoń≠ Topologii, OGIZ, Moscow-Leningrad,], 1947 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.