×

Rayleigh-Rith-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions. (English) Zbl 0204.11102


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, 1965.
[2] Aubin, Ann. Scuola Norm. Sup. Pisa 21 pp 599– (1967)
[3] Aubin, J. Math. Anal. Appl. 24 pp 1– (1968)
[4] Numerical solution of boundary value problems by the perturbed variational principle, Univ. of Maryland Tech. Note BN-624, 1969.
[5] Approximation by Hill functions, Univ. of Maryland Tech. Note BN-648, 1970.
[6] Birkhoff, Num. Math. 11 pp 232– (1968)
[7] Bramble, Num. Math. 9 pp 236– (1966)
[8] Bramble, SIAM Num. Anal.
[9] Bramble, Num. Math.
[10] Bramble, Math. Comp.
[11] Ciarlet, Num. Math. 9 pp 394– (1967)
[12] Di Guglielmo, Calcolo 6 pp 279– (1969)
[13] Fix, Studies in Appl. Math. 48 pp 265– (1969) · Zbl 0179.22501
[14] See also, The finite element method and approximation theory, Proceedings of the Symposium on the Numerical Solution of Partial Differential Equations, Univ. of Maryland, May 1970.
[15] and , A finite difference scheme for generalized Neumann problems in Numerical Solutions of Partial Differential Equations, editor, Academic Press, New York, 1966.
[16] Numerical methods for elliptic boundary problems, Thesis, Univ. of Maryland, 1969.
[17] and , Probléms aux Limites non Homogènes et Applications, Vol. 1, Dunod, Paris, 1968.
[18] Lineare Spline-Funktionen und die Methoden von Ritz für elliptische Randwert Probleme, Preprint.
[19] Schechter, II, Math. Scand. 13 pp 47– (1963) · Zbl 0131.09505
[20] Schultz, SIAM Num. Anal. 6 pp 523– (1969)
[21] Schultz, SIAM Num. Anal. 6 pp 570– (1969)
[22] Hermite interpolation-type Ritz methods for two-point boundary value problems, Numerical solution of Partial Differential Equations, editor, Academic Press, New York, 1966.
[23] Ztámal, Num. Math. 12 pp 394– (1968)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.