×

Geometry associated with semisimple flat homogeneous spaces. (English) Zbl 0205.26004


MSC:

53C30 Differential geometry of homogeneous manifolds
53C35 Differential geometry of symmetric spaces
53A55 Differential invariants (local theory), geometric objects
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Armand Borel, On the curvature tensor of the Hermitian symmetric manifolds, Ann. of Math. (2) 71 (1960), 508 – 521. · Zbl 0100.36101
[2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458 – 538. · Zbl 0097.36401
[3] E. Cartan, “Les espaces a connexion conforme,” en Oevres complètes. Part III, Vol. I: Divérs, géométrie différentielle, Gauthier-Villars, Paris, 1955, pp. 749-797. MR 17, 697.
[4] -, “Sur les variétés a connexion projective,” en Oevres complètes. Part III, Vol. I: Divérs, géométrie différentielle, Gauthier-Villars, Paris, 1955, pp. 825-861. MR 17, 697.
[5] Shiing-Shen Chern, Pseudo-groupes continus infinis, Géométrie différentielle., Colloques Internationaux du Centre National de la Recherche Scientifique, Strasbourg, vol. 1953, Centre National de la Recherche Scientifique, Paris, 1953, pp. 119 – 136 (French). · Zbl 0053.01604
[6] Charles Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, Colloque de topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège; Masson et Cie., Paris, 1951, pp. 29 – 55 (French). · Zbl 0054.07201
[7] Victor Guillemin, The integrability problem for \?-structures, Trans. Amer. Math. Soc. 116 (1965), 544 – 560. · Zbl 0178.55702
[8] Victor Guillemin and Shlomo Sternberg, Deformation theory of pseudogroup structures, Mem. Amer. Math. Soc. No. 64 (1966), 80. · Zbl 0169.53001
[9] SigurÄ’ur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962.
[10] Shôshichi Kobayashi, On connections of Cartan, Canad. J. Math. 8 (1956), 145 – 156. · Zbl 0075.31502
[11] Shoshichi Kobayashi, Theory of connections, Ann. Mat. Pura Appl. (4) 43 (1957), 119 – 194. · Zbl 0124.37604
[12] Shoshichi Kobayashi, Canonical forms on frame bundles of higher order contact, Proc. Sympos. Pure Math. Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 186 – 193.
[13] Shoshichi Kobayashi and Tadashi Nagano, On projective connections, J. Math. Mech. 13 (1964), 215 – 235. · Zbl 0117.39101
[14] Shoshichi Kobayashi and Tadashi Nagano, On filtered Lie algebras and geometric structures. I, J. Math. Mech. 13 (1964), 875 – 907. · Zbl 0142.19504
[15] Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. · Zbl 0091.34802
[16] Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329 – 387. · Zbl 0134.03501
[17] Yozô Matsushima and Shingo Murakami, On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, Ann. of Math. (2) 78 (1963), 365 – 416. · Zbl 0125.10702
[18] Yozô Matsushima and Shingo Murakami, On certain cohomology groups attached to Hermitian symmetric spaces, Osaka J. Math. 2 (1965), 1 – 35. · Zbl 0142.19503
[19] S. Murakami, Cohomology groups of vector-valued forms on symmetric spaces, Lecture Note, Univ. of Chicago, Chicago, Ill., 1966.
[20] Tadashi Nagano, The projective transformation on a space with parallel Ricci tensor., Kōdai Math. Sem. Rep. 11 (1959), 131 – 138. · Zbl 0097.37503
[21] Tadashi Nagano, The conformal transformation on a space with parallel Ricci tensor., J. Math. Soc. Japan 11 (1959), 10 – 14. · Zbl 0089.17201
[22] Tadashi Nagano, Transformation groups on compact symmetric spaces, Trans. Amer. Math. Soc. 118 (1965), 428 – 453. · Zbl 0151.28801
[23] Takushiro Ochiai, Classification of the finite nonlinear primitive Lie algebras, Trans. Amer. Math. Soc. 124 (1966), 313 – 322. · Zbl 0207.34201
[24] Takushiro Ochiai, On the automorphism group of a \?-structure, J. Math. Soc. Japan 18 (1966), 189 – 193. · Zbl 0172.47002
[25] ”Sophus Lie” de l’École Normale Supérieure 1954/55, Séminaire théorie des algèbres de Lie. Topologie des groupes de Lie, Secrétariat mathématique, Paris, 1955. MR 17, 384.
[26] I. M. Singer and Shlomo Sternberg, The infinite groups of Lie and Cartan. I. The transitive groups, J. Analyse Math. 15 (1965), 1 – 114. · Zbl 0277.58008
[27] Noboru Tanaka, Projective connections and projective transformations, Nagoya Math. J. 12 (1957), 1 – 24. · Zbl 0081.38404
[28] Noboru Tanaka, Conformal connections and conformal transformations, Trans. Amer. Math. Soc. 92 (1959), 168 – 190. · Zbl 0096.15603
[29] Noboru Tanaka, On the equivalence problems associated with a certain class of homogeneous spaces, J. Math. Soc. Japan 17 (1965), 103 – 139. · Zbl 0132.16303
[30] H. Weyl, Zur Infinitesimalgeometrie Einordnung der projektiven und der konformen Auffassung, Göttingen. Nachr. 1921, 99-112. · JFM 48.0844.04
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.