zbMATH — the first resource for mathematics

Boundary problems for pseudo-differential operators. (English) Zbl 0206.39401

35S15 Boundary value problems for PDEs with pseudodifferential operators
47L60 Algebras of unbounded operators; partial algebras of operators
Full Text: DOI
[1] Atiyah, M. F.,K-theory. Benjamin, New York 1967.
[2] –,Bott periodicity and the index of elliptic operators.Quart. J. Math., 19 (1968), 113–140. · Zbl 0159.53501 · doi:10.1093/qmath/19.1.113
[3] Atiyah, M. F. &Bott, R., The index problem for manifolds with boundary.Coll. Differential Analysis, Tata Institute, Bombay, Oxford University Press 1964, 175–186.
[4] Atiyah, M. F. andSinger, I. M., The index of elliptic operators.Ann. of Math., 87 (1968) 434–530.
[5] Boutet de Monvel, L., Comportement d’un opérateur pseudo différential sur une variété à bord.J. Anal. Math., 17 (1966), 241–304. · Zbl 0161.07902 · doi:10.1007/BF02788660
[6] –, Operateurs pseudo différentiels analytiques et problèmes aux limites elliptiques.Ann. Inst. Fourier, 19 (1969), 163–268. · Zbl 0176.08703
[7] Hörmander, L., Pseudo-differential operators and hypoelliptic equations.Amer. Math. Soc. Proc. Symp. Pure Appl. Math., 10 (1968), 138–183.
[8] Hörmander, L., Fourier integral operators.Acta Math. (to appear). · Zbl 0235.47024
[9] Kohn, J. J. &Nirenberg, L., An algebra of pseudo-differential operators.Comm. Pure Appl. Math., 18 (1965), 269–305. · Zbl 0171.35101 · doi:10.1002/cpa.3160180121
[10] Shamir, E., Elliptic systems of singular integral operators.Trans. Amer. Math. Soc., 127 (1967), 107–124. · Zbl 0157.19303 · doi:10.1090/S0002-9947-1967-0215138-7
[11] Višik, M. I. &Eskin, G. I., Normally solvable problems for elliptic systems of equations in convolutions.Mat. Sbornik, 74 (116) (1967), 326–356.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.