×

zbMATH — the first resource for mathematics

Statistical study of digits of some square roots of integers in various bases. (English) Zbl 0208.19505

MSC:
65C99 Probabilistic methods, stochastic differential equations
PDF BibTeX Cite
Full Text: DOI
References:
[1] É. Borel, Probability and Certainty, Walker, New York, 1963.
[2] J. Marcus boorman, ”Square-root notes,” Math. Mag., v. 1, 1887, pp. 207-208.
[3] Harald Cramér, Mathematical Methods of Statistics, Princeton Mathematical Series, vol. 9, Princeton University Press, Princeton, N. J., 1946. · Zbl 0063.01014
[4] Editor, Math. Mag., v. 1, 1887, p. 164.
[5] P. Erdös and M. Kac, On the number of positive sums of independent random variables, Bull. Amer. Math. Soc. 53 (1947), 1011 – 1020. · Zbl 0032.03502
[6] William Feller, An introduction to probability theory and its applications. Vol. I, Third edition, John Wiley & Sons, Inc., New York-London-Sydney, 1968. · Zbl 0077.12201
[7] Ronald A. Fisher and Frank Yates, Statistical Tables for Biological, Agricultural and Medical Research, Oliver and Boyd Ltd., London, 1943. 2nd ed. · Zbl 0028.41204
[8] I. J. Good, ”The generalized serial test and the binary expansion of \( \surd 2\),” J. Roy. Statist. Soc Ser. A, v. 130, 1967, pp. 102-107.
[9] M. F. Jones, ”Approximation to the square roots of primes less than 100,” Math. Comp., v. 21, 1967, p. 234.
[10] Arthur H. Kruse, Some notions of random sequence and their set-theoretic foundations, Z. Math. Logik Grundlagen Math. 13 (1967), 299 – 322. · Zbl 0217.01501
[11] M. Lal, ”Expansion of \( \surd 2\) to 19,600 decimals,” Math. Comp., v. 21, 1967, p. 258.
[12] M. Lal & W. F. Lunnon, ”Expansion of \( \surd 2\) to 100,000 Decimals,” Math. Comp., v. 22, 1968, pp. 899-900.
[13] Per Martin-Löf, The definition of random sequences, Information and Control 9 (1966), 602 – 619. · Zbl 0244.62008
[14] N. C. Metropolis, G. Reitwiesner, and J. von Neumann, Statistical treatment of values of first 2,000 decimal digits of \? and of \? calculated on the ENIAC, Math. Tables and Other Aids to Computation 4 (1950), 109 – 111.
[15] Richard von Mises, Mathematical theory of probability and statistics, Edited and Complemented by Hilda Geiringer, Academic Press, New York-London, 1964. · Zbl 0063.04022
[16] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis. Band I: Reihen. Integralrechnung. Funktionentheorie, Dritte berichtigte Auflage. Die Grundlehren der Mathematischen Wissenschaften, Band 19, Springer-Verlag, Berlin-New York, 1964 (German). G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis. Band II: Funktionentheorie. Nullstellen. Polynome. Determinanten. Zahlentheorie, Dritte berichtigte Auflage. Die Grundlehren der Mathematischen Wissenschaften, Band 20, Springer-Verlag, Berlin-New York, 1964 (German).
[17] George W. Reitwiesner, An ENIAC determination of \? and \? to more than 2000 decimal places, Math. Tables and Other Aids to Computation 4 (1950), 11 – 15.
[18] Wolfgang M. Schmidt, On normal numbers, Pacific J. Math. 10 (1960), 661 – 672. · Zbl 0093.05401
[19] R. G. Stoneham, A study of 60,000 digits of the transcendental ”\?”, Amer. Math. Monthly 72 (1965), 483 – 500. · Zbl 0133.41501
[20] Kōki Takahashi & Masaaki Sibuya, ”The decimal and octal digits of \( \surd n\),” MTAC, v. 21, 1967, pp. 259-260.
[21] Kōki Takahashi & Masaaki Sibuya, ”Statistics of the digits of \( \surd n\),” Joho Shori (Information Processing), v. 6, 1965, pp. 221-223. (Japanese)
[22] Horace S. Uhler, ”Many-figure approximations to \( \surd 2\), and distribution of digits in \( \surd 2\) and \( 1/\surd 2\),” Proc. Nat. Acad. Sci. U.S.A., v. 37, 1951, pp. 63-67. MR 12, 444. · Zbl 0042.36305
[23] Horace S. Uhler, ”Approximations exceeding 1300 decimals for \( \surd 3\), \( 1/\surd 3\), \( \sin (\pi /3)\) and distribution of digits in them,” Proc. Nat. Acad. Sci. U.S.A., v. 37, 1951, pp. 443-447. MR 13, 161. · Zbl 0042.36304
[24] W. A. Beyer, N. Metropolis & J. R. Neergaard, ”Square roots of integers 2 to 15 in various bases 2 to 10: 88062 binary digits or equivalent,” Math. Comp., v. 23, 1969, p. 679.
[25] Elliott H. Lieb & W. A. Beyer, ”Clusters on a thin quadratic lattice (transfer matrix technique),” Studies in Appl. Math., v. 48, 1969, pp. 77-90. · Zbl 0187.41101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.