×

zbMATH — the first resource for mathematics

A general solution of the diffusion equation for semiinfinite geometries. (English) Zbl 0209.12501

MSC:
35K57 Reaction-diffusion equations
35K55 Nonlinear parabolic equations
PDF BibTeX Cite
Full Text: DOI
References:
[1] Carslaw, H. S.; Jaeger, J. C.: The conduction of heat in solids. (1947) · Zbl 0029.37801
[2] Crank, J.: The mathematics of diffusion. (1956) · Zbl 0071.41401
[3] Babbitt, J. D.: On the differential equations of diffusion. Canad. J. Res. A 28, 449 (1950)
[4] Moore, F. K.: Theory of laminar flows. (1964) · Zbl 0131.26902
[5] Carslaw, H. S.; Jaeger, J. C.: The conduction of heat in solids. 27-29 (1947) · Zbl 0029.37801
[6] Mathews, J.; Walker, R. L.: Mathematical methods of physics. 210 (1965) · Zbl 0124.39201
[7] Liouville, J.: Mémoire sur le calcul des différentielles à indices quelconques. J. école polytech. 13, 62-71 (1832)
[8] Post, E. L.: Generalized differentiation. Trans. amer. Math. soc. 32, 723-781 (1930) · JFM 56.0349.01
[9] Riesz, M.: L’intégral de Riemann-Liouville et le problème de Cauchy. Acta math. 81, 1-27 (1949) · Zbl 0033.27601
[10] Grünwald, A. K.: Ueber ”begrenzte” derivationen und deren anwendung. Z. math. Phys. 12, 441-480 (1867)
[11] J. Spanier and K. B. Oldham, ”The Theory and Applications of Differentiation and Integration to an Arbitrary Order,” in preparation. · Zbl 0292.26011
[12] Erdelyi, A.: Tables of integral transforms. 2 (1954)
[13] Duff, G. F. D: Partial differential equations. (1956) · Zbl 0071.30903
[14] Heaviside, O.: Electromagnetic theory. 2 (1920) · JFM 30.0801.03
[15] Abramowitz, M.; Stegun, I. A.: Nat. bur. Standards, appl. Math. ser. No. 55. (1964)
[16] Oldham, K. B.: A new approach to the solution of electrochemical problems involving diffusion. Anal. chem. 41, 1904 (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.