×

zbMATH — the first resource for mathematics

Semigroups on nonlinear contractions on convex sets. (English) Zbl 0209.45503

MSC:
47H20 Semigroups of nonlinear operators
47H05 Monotone operators and generalizations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] \scH. Brezis, M. G. Crandall, and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space, Comm. Pure Appl. Math., to appear. · Zbl 0182.47501
[2] Browder, F.E, Nonlinear operators and nonlinear equations of evolution in Banach spaces, (), to appear · Zbl 0176.45301
[3] Browder, F.E, Nonlinear equations of evolution and nonlinear accretive operators in Banach spaces, Bull. amer. math. soc., 73, 867-874, (1967) · Zbl 0176.45301
[4] Browder, F.E, Nonlinear maximal monotone operators in Banach spaces, Math. ann., 175, 89-113, (1968) · Zbl 0159.43901
[5] Chernoff, P.R, Note on product formulas for operator semigroups, J. func. anal., 2, 238-242, (1968) · Zbl 0157.21501
[6] Crandall, M.G, Semigroups of contractions and monotonicity, (), to appear · Zbl 0193.10903
[7] Crandall, M.G; Pazy, A, Semigroups of nonlinear contractions and dissipative sets, J. func. anal., 3, 376-418, (1969) · Zbl 0182.18903
[8] Crandall, M.G; Pazy, A, On accretive sets in Banach spaces, J. func. anal., 5, 204-217, (1970) · Zbl 0198.18503
[9] Dorroh, J.R, Some classes of semigroups of nonlinear transformations and their generators, J. math. soc. Japan, 20, 437-455, (1968) · Zbl 0165.49002
[10] Dorroh, J.R, A nonlinear Hille-Yosida-Phillips theorem, J. func. anal., 3, 345-353, (1969) · Zbl 0174.45602
[11] Hille, E; Phillips, R.S, Functional analysis and semi-groups, ()
[12] Kato, T, Nonlinear semigroups and evolution equations, J. math. soc. Japan, 19, No. 4, 508-520, (1967) · Zbl 0163.38303
[13] Kato, T, Accretive operators and nonlinear evolution equations in Banach spaces, (), to appear · Zbl 0232.47069
[14] Kato, T, On the generators of nonlinear semi-groups, (), to appear
[15] Kirszbraun, M.D, Über die zusammenziehenden und lipschitzschen transformationen, Fund. math., 22, 77-108, (1934) · Zbl 0009.03904
[16] Kōmura, Y, Nonlinear semigroups in Hilbert space, J. math. soc. Japan, 19, 493-507, (1967) · Zbl 0163.38302
[17] Kōmura, Y, Differentiability of nonlinear semi-groups, J. math. soc. Japan, 21, 375-402, (1969) · Zbl 0193.11004
[18] Mermin, J, Accretive operators and nonlinear semigroups thesis, (1968), Berkeley
[19] Minty, G.J, Monotone (nonlinear) operators in Hilbert space, Duke math. J., 29, 341-346, (1962) · Zbl 0111.31202
[20] Miyadera, I, Note on nonlinear contraction semigroups, (), 219-225 · Zbl 0174.19402
[21] Miyadera, I, On the convergence of nonlinear semigroups, Tôhoku math. J., 21, 221-236, (1969) · Zbl 0187.07602
[22] Miyadera, I, On the convergence of nonlinear semigroups II, J. math. soc. Japan, 21, 403-412, (1969) · Zbl 0182.47301
[23] Miyadera, I; Ôharu, S, Approximation of semigroups of nonlinear operators, 22, 24-47, (1970)
[24] Mosco, U, Convergence of convex sets and of solutions of variational inequalities, (1968), Pisa · Zbl 0192.49101
[25] Neuberger, J.W, An exponential formula for one-parameter semigroups of nonlinear transformations, J. math. soc. Japan, 18, 154-157, (1966) · Zbl 0148.38802
[26] Ôharu, S, Note on the representation of semigroups of nonlinear operators, (), 1149-1154 · Zbl 0148.38803
[27] Rockafellar, R.T, Convex functions, monotone operators and variational inequalities, (), to appear · Zbl 0202.14303
[28] \scR. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, to appear. · Zbl 0222.47017
[29] \scD. Rutledge, A generator for a semigroup of nonlinear transformations, Proc. Amer. Math. Soc. · Zbl 0185.22301
[30] Stampacchia, G, Equations elliptiques du second ordre à coefficient discontinus, (1966), Montréal · Zbl 0151.15501
[31] Trotter, H.F, Approximation of semigroups of operators, Pacific J. math., 8, 887-919, (1958) · Zbl 0099.10302
[32] Trotter, H.F, On the product of semigroups of operators, (), 545-551 · Zbl 0099.10401
[33] \scJ. Watanabe, Semigroups of nonlinear operators on closed convex sets, to appear. · Zbl 0182.19002
[34] \scG. F. Webb, Representation of semigroups of nonlinear transformations in Banach spaces, J. Math. Mech., to appear. · Zbl 0193.11101
[35] Yosida, K, Functional analysis, (1966), Springer Verlag New York/London · Zbl 0152.32102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.