zbMATH — the first resource for mathematics

Accretive sets and differental equations in Banach spaces. (English) Zbl 0209.45602

47J05 Equations involving nonlinear operators (general)
47H06 Nonlinear accretive operators, dissipative operators, etc.
Full Text: DOI
[1] H. Brezis, and A. PazySemigroups of nonlinear contractions on convex sets, J. Functional Analysis, to appear.
[2] F. Browder,Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Nonlinear Functional Anal., Chicago, Amer. Math. Soc., 1968. · Zbl 0167.15205
[3] P. Chernoff,Note on product formulas for operator semigroups, J. Functional Analysis,2 (1968), 238–242. · Zbl 0157.21501 · doi:10.1016/0022-1236(68)90020-7
[4] M. Crandall,Differential equations on convex sets, J. Math. Soc. Japan, to appear. · Zbl 0224.34006
[5] T. Kato,Nonlinear semigroups and evolution equations, J. Math. Soc. Japan19 (1967), 508–520. · Zbl 0163.38303 · doi:10.2969/jmsj/01940508
[6] T. Kato,Accretive operators and nonlinear evolution equations in Banach spaces, Proc. Symp. Nonlinear Functional Anal., Chicago, Amer. Math. Soc., 1968.
[7] Y. Komura,Nonlinear semigroups in Hilbert space, J. Math. Soc. Japan19 (1967) 493–507. · Zbl 0163.38302 · doi:10.2969/jmsj/01940493
[8] J. Mermin,Aceretive operators and nonlinear semigroups, Thesis, University of California, Berkeley, 1968.
[9] I. Miyadera, and S. Ôharu,Approximation of semigroups of nonlinear operators, to appear. · Zbl 0262.47030
[10] G. Webb,Nonlinear evolution equations and product integration, to appear. · Zbl 0199.20703
[11] K. Yosida,Functional Analysis, Springer Verlag, Berlin, 1965. · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.