×

zbMATH — the first resource for mathematics

Hereditary Noetherian prime rings. (English) Zbl 0211.05701

MSC:
16N60 Prime and semiprime associative rings
16E60 Semihereditary and hereditary rings, free ideal rings, Sylvester rings, etc.
16P40 Noetherian rings and modules (associative rings and algebras)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chase, S.U, A generalization of the ring of triangular matrices, Nagoya math. J., 18, 13-25, (1961) · Zbl 0113.02901
[2] Eilenberg, S; Nagao, H; Nakayama, T, On the dimension of modules and algebras IV. dimension of residue rings of hereditary rings, Nagoya math. J., 10, 87-96, (1956) · Zbl 0074.26003
[3] \scD. Eisenbud and J. C. Robson, Modules over Dedekind Prime rings, J. Algebra (to be published). · Zbl 0211.05603
[4] Harada, M, Structure of hereditary orders over local rings, J. math. Osaka city univ., 14, 1-22, (1963) · Zbl 0152.02003
[5] Harada, M, On generalization of Asano’s maximal orders in a ring, Osaka J. math., 1, 61-68, (1964) · Zbl 0241.16004
[6] Jacobson, N, The theory of rings, () · JFM 66.0110.01
[7] Michler, G.O, Structure of semi-perfect hereditary Noetherian rings, J. algebra, 13, 327-344, (1969) · Zbl 0198.05803
[8] Michler, G.O, Primringe mit Krull-dimension eins, J. für die reine und angewandte Mathematik, 239/240, 366-381, (1970) · Zbl 0174.33001
[9] Nakayama, T, On Frobeniusean algebras II, Ann. math., 42, 1-21, (1941) · JFM 67.0092.04
[10] Nakayama, T, Note on uniserial and generalized uniserial rings, (), 285-289 · JFM 66.0104.02
[11] Robson, J.C, Non-commutative Dedekind rings, J. algebra, 9, 249-265, (1968) · Zbl 0174.06801
[12] Small, L, Hereditary rings, (), 25-27 · Zbl 0135.07703
[13] \scD. Eisenbud and P. Griffith, Serial Rings, J. Algebra (to be published). · Zbl 0212.37502
[14] \scJ. C. Robson, Idealiser rings and hereditary Noetherian prime rings (to be published). · Zbl 0239.16003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.