×

zbMATH — the first resource for mathematics

Asymptotic fixed point theorems. (English) Zbl 0212.27704

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Borisovich, Ju. G.: An application of the concept of rotation of a vector field. Dokladi Akad. Nauk SSSR,153, 12-15 (1963).
[2] Borsuk, K.: Sur les retractes. Fundamenta Math.17, 153-170 (1931). · Zbl 0003.02701
[3] Bourgin, D. G.: Modern algebraic topology. New York, 1964.
[4] Browder, F. E.: The topological fixed point theory and its applications to functional analysis. Princeton Ph. D. Dissertation, June 1948.
[5] ?? On a generalization of the Schauder fixed point theorem. Duke Math. J.26, 291-303 (1959). · Zbl 0086.10203 · doi:10.1215/S0012-7094-59-02629-8
[6] ?? On continuity of fixed points under deformations of continuous mappings. Summa Brasil. Math.4, 183-190 (1960).
[7] ?? On the fixed point index for continuous mappings of locally connected spaces. Summa Brasil. Math.4, 253-293 (1960).
[8] ?? Another generalization of the Schauder fixed point theorem. Duke Math. J.32, 399-406 (1965). · Zbl 0128.35901 · doi:10.1215/S0012-7094-65-03239-4
[9] ?? A further generalization of the Schauder fixed point theorem. Duke Math. J.32, 575-578 (1965). · Zbl 0137.32601 · doi:10.1215/S0012-7094-65-03261-8
[10] ?? Fixed point theorems on infinite dimensional manifolds. Trans. Amer. Math. Soc.119, 179-194 (1965). · Zbl 0132.18803 · doi:10.1090/S0002-9947-1965-0195082-2
[11] ?? Nonlinear operators in Banach spaces. Math. Ann.162, 280-283 (1966). · Zbl 0148.13403 · doi:10.1007/BF01360916
[12] ?? Existence of periodic solutions for nonlinear equations of evolution. Proc. Nat. Acad. Sci. USA53, 1100-1103 (1965). · Zbl 0135.17601 · doi:10.1073/pnas.53.5.1100
[13] ?? Fixed point theorems for noncompact mappings in Hilbert space. Proc. Nat. Acad. Sci. USA53, 1272-1276 (1965). · Zbl 0125.35801 · doi:10.1073/pnas.53.6.1272
[14] ?? Mapping theorems for noncompact nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. USA54, 337-342 (1965). · Zbl 0133.08101 · doi:10.1073/pnas.54.2.337
[15] ?? Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. USA54, 1041-1044 (1966). · Zbl 0128.35801 · doi:10.1073/pnas.54.4.1041
[16] – Les problèmes nonlinéaires. University of Montreal Press, 1966, 153 pp.
[17] ?? Fixed point theorems for nonlinear semicontractive mappings in Banach spaces. Archive Rat. Mech. and Anal.21, 259-269 (1966). · Zbl 0144.39101
[18] ?? A new generalization of the Schauder fixed point theorem. Math. Ann.174, 285-290 (1967). · Zbl 0176.45203 · doi:10.1007/BF01364275
[19] ?? The fixed point theory of multivalued mappings in topological vector spaces. Math. Ann.177, 283-301 (1968). · Zbl 0176.45204 · doi:10.1007/BF01350721
[20] Deleanu, A.: Un théorème de point fixe pour les retractes des espaces convexoides. C. R. Acad. Sci. Paris247, 1950-1952 (1958). · Zbl 0083.38701
[21] ?? Théorie des points fixes sur les retractes de voisinage des espaces convexoides. Bull. Soc. Math. France87, 235-243 (1959). · Zbl 0093.36801
[22] ?? Une genéralization du théorème du point fixe de Schauder. Bull. Soc. Math. France89, 223-226 (1961). · Zbl 0103.39201
[23] Dugundji, J.: An extension of Tietze’s theorem. Pacific J. Math.1, 353-367 (1951). · Zbl 0043.38105
[24] Edelstein, M.: On nonexpansive mappings in Banach spaces. Proc. Cambridge Phil. Soc.60, 439-447 (1964). · Zbl 0196.44603 · doi:10.1017/S0305004100037956
[25] Eells, J.: A setting for global analysis. Bull. Amer. Math. Soc.72, 751-807 (1966). · doi:10.1090/S0002-9904-1966-11558-6
[26] Eilenberg, S., Steenrod, N.: Foundations of algebraic topology. Princeton Univ. Press, Princeton, N.J., 1952. · Zbl 0047.41402
[27] Göhde, D.: Zum Prinzip der kontraktiven Abbildung. Math. Nachr.30, 251-258 (1966). · Zbl 0127.08005 · doi:10.1002/mana.19650300312
[28] Granas, A.: The theory of compact vector fields and some of its applications to topology of functional spaces (I). Rozprawy Mat.30, 1-89 (1962). · Zbl 0111.11001
[29] Halanay, A.: Asymptotic stability and small perturbations of periodic systems of differential equations with retarded arguments. Uspekhi Mat. Nauk17, 231-233 (1962).
[30] Hanner, O.: Some theorems on absolute neighborhood retracts. Arkiv Math.1, 389-408 (1951). · Zbl 0042.41102 · doi:10.1007/BF02591376
[31] Hu, S. T.: Theory of retracts. Wayne University Press, 1965. · Zbl 0145.43003
[32] Jones, G. S.: The existence of periodic solutions off?(x)=??f(x?1) [1+f(x)]. J. Math. Anal. Appl.2, 435-450 (1962). · Zbl 0106.29504 · doi:10.1016/0022-247X(62)90017-3
[33] ?? Asymptotic fixed point theorems and periodic solutions of functional-differential equations. Contrib. Different-Eqs.2, 385-405 (1963).
[34] ?? Periodic motions in Banach space and applications to functional-differential equations. Contrib. Diff. Eqs.3, 75-106 (1964).
[35] ?? Stability and asymptotic fixed point theory. Proc. Nat. Acad. Sci. USA503, 1262-1264 (1965). · Zbl 0131.13601 · doi:10.1073/pnas.53.6.1262
[36] Kirk, W. A.: A fixed point theorem for mappings which do not increase distance. Amer. Math. Monthly72, 1004-1006 (1965). · Zbl 0141.32402 · doi:10.2307/2313345
[37] Klee, V. L.: Some topological properties of convex sets. Trans. Amer. Math. Soc.78, 30-45 (1965). · Zbl 0064.10505 · doi:10.1090/S0002-9947-1955-0069388-5
[38] Krasnoselski, M. A.: The operator of translation on trajectories of differential equations. (Russian), Moscow, 1966.
[39] Kuratowski, K.: Topologie, II. Warsaw, 1950.
[40] Lefschetz, S.: Topics in topology. Princeton, 1942. · Zbl 0061.39303
[41] – Algebraic topology. Amer. Math. Soc. Colloquium Publications, Vol.27, Providence, 1942. · Zbl 0061.39302
[42] Leray, J.: Sur les équations et les transformations. J. math. pures et appl.24, 201-248 (1945). · Zbl 0060.40705
[43] – La théorie des points fixes et ses applications en analyse. Proc. Internat. Congress Math. Cambridge, 1950, Vol.2, 202-208 (1952).
[44] ?? Théorie des points fixes: Indice total et nombre de Lefschetz. Bull. Soc. Mat. France87, 221-233 (1959). · Zbl 0093.36702
[45] ??, Schauder, J.: Topologie et équations fonctionelles. Ann. Ecole Norm. Sup.51, 45-78 (1934). · JFM 60.0322.02
[46] Palais, R.: Homotopy theory of infinite dimensional manifolds. Topology5, 115-132 (1966). · Zbl 0143.35203 · doi:10.1016/0040-9383(66)90013-9
[47] Schauder, J.: Der Fixpunktsatz in Funktionalräumen. Studia Math.2, 171-180 (1930). · JFM 56.0355.01
[48] Spanier, E.: Algebraic topology. New York, 1966. · Zbl 0145.43303
[49] Tychonoff, A.: Ein Fixpunktsatz. Math. Ann.111, 767-776 (1935). · Zbl 0012.30803 · doi:10.1007/BF01472256
[50] Van der Walt, T.: Fixed and almost fixed points. Math. Centre Tracts No.1, Mathematisch Centrum Amsterdam, 1963. · Zbl 0139.40801
[51] Yoshizawa, T.: Stable sets and periodic solutions in a perturbed system. Contrib. Diff. Eqs.2, 407-420 (1963). · Zbl 0131.08605
[52] – Ultimate boundedness of solutions and periodic solution of functional-differential equations. Colloque Inter. sur les Vibrations Forcées dans les Systémes Non-linéaires, Marseille (1964), 167-179.
[53] – Stability theory by Liapunov’s second method. Publications Math. Soc. Japan No. 9, 1966.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.