×

zbMATH — the first resource for mathematics

Some applications of the theory of blocks of characters of finite groups. I. (English) Zbl 0214.28101

MSC:
20C20 Modular representations and characters
PDF BibTeX Cite
Full Text: DOI
References:
[1] Brauer, R, Zur darstellungstheorie der gruppen endlicher ordnung I, Math. Z., 63, 406-444, (1956) · Zbl 0093.03101
[2] Brauer, R, Zur darstellungstheorie der gruppen endlicher ordnung II, Math. Z., 72, 25-46, (1959)
[3] Brauer, R; Feit, W, On the number of irreducible characters of finite groups in a given block, (), 361-365 · Zbl 0084.25801
[4] Brauer, R; Fowler, K.A, On groups of even order, Ann. math., 62, 565-583, (1955) · Zbl 0067.01004
[5] Brauer, R; Nesbitt, C.J, On the modular characters of groups, Ann. math., 42, 556-590, (1941) · JFM 67.0073.02
[6] Reiner, I; Curtis, C.W, Representation theory of finite groups and associative algebras, (1962), Interscience New York, London · Zbl 0131.25601
[7] Iizuka, K, On Brauer’s theorem on sections in the theory of group characters, Math. Z., 75, 299-304, (1961) · Zbl 0096.01901
[8] Landau, E, Über die klassenanzahl der binären quadratischen formen von negativer diskriminante, Math. ann., 56, 671-676, (1903) · JFM 34.0241.09
[9] Nagao, H, A proof of Brauer’s theorem on generalized decomposition numbers, Nagoya J. math., 22, 73-77, (1963) · Zbl 0127.25602
[10] Osima, M, Notes on blocks of group characters, Math. J. okayama univ., 4, 175-188, (1955) · Zbl 0064.25401
[11] Rosenberg, A, Blocks and centres of group algebras, Math. Z., 76, 209-216, (1961) · Zbl 0108.25505
[12] Schur, I, Über eine klasse von endlichen gruppen linearer substitutionen, Sitzber. preuss. akad. wiss., 77-91, (1905) · JFM 36.0194.02
[13] Suzuki, M, Finite groups with nilpotent centralizers, Trans. am. math. soc., 99, 425-470, (1961) · Zbl 0101.01604
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.