×

zbMATH — the first resource for mathematics

Coerciveness inequalities for nonelliptic systems of partial differential equations. (English) Zbl 0215.45302

MSC:
35F05 Linear first-order PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Agmon, S., The coerciveness problem for integro-differential forms, J. Analyse Math., 6, 183-223 (1958) · Zbl 0119.32302
[2] Agmon, S., The L_p approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa, 13, 405-448 (1959) · Zbl 0093.10601
[3] Agmon, S., Lectures on elliptic boundary value problems (1965), New York: Van Nostrand, New York · Zbl 0151.20203
[4] Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure Appl. Math., 17, 35-92 (1964) · Zbl 0123.28706
[5] N. Aronszajn,On coercive integro-differential quadratic forms, Conference on Partial Differential Equations, Univ. of Kansas, Tech. Rep. No. 14, pp. 94-106 (1954).
[6] Avila, G. S. S.; Wilcox, C. H., The near-field behavior of the Green’s matrix in anisotropic wave motion, J. Math. Mech., 16, 867-883 (1967) · Zbl 0152.44306
[7] Calderon, A. P.; Zygmund, A., On singular integrals, Amer. J. Math., 78, 289-309 (1956) · Zbl 0072.11501
[8] Calderon, A. P.; Zygmund, A., Singular integral operators and differential equations, Amer. J. Math., 79, 901-921 (1957) · Zbl 0081.33502
[9] Douglis, A.; Nirenberg, L., Interior estimates for elliptic systems of partial differential equations, Comm. Pure Appl. Math., 8, 503-538 (1955) · Zbl 0066.08002
[10] Fichera, G., Linear elliptic differential systems and eigenvalue problems (1965), New York: Springer-Verlag, New York · Zbl 0138.36104
[11] De Figueiredo, D. G., The coerciveness problem for forms over vector valued functions, Comm. Pure Appl. Math., 16, 63-94 (1963) · Zbl 0136.09502
[12] Friedrichs, K. O., The identity of weak and strong extensions of differential operators, Trans. A. M. S., 55, 132-151 (1914) · Zbl 0061.26201
[13] Hörmander, L., Linear partial differential operators (1963), New York: Springer-Verlag, New York · Zbl 0171.06802
[14] Kato, T., Perturbation theory for linear operators (1966), New York: Springer-Verlag, New York · Zbl 0148.12601
[15] Love, A. E. H., The mathematical theory of elasticity (1944), New York: Dover Publications, New York · Zbl 0063.03651
[16] Mikhlin, S. G., Multidimensional singular integrals and integral equations (1965), London: Pergamon Press, London · Zbl 0129.07701
[17] Schechter, M., Coerciveness of linear partial differential operator satisfying zero Dirichlet data, Comm. Pure Appl. Math., 11, 153-174 (1958) · Zbl 0101.31202
[18] J. R. Schulenberger,Wave propagation in inhomogeneous anisotropic media, Thesis, University of Arizona 1968.
[19] – –,The singular integral associated with a class of uniformly propagative systems, ONR Technical Summary Rept. No. 1 University of Arizona, (August 1969).
[20] J. R. Schulenberger andC. H. Wilcox,Completeness of the wave operators for perturbations of uniformly propagative systems, J. Functional Anal (to appear, 1971). · Zbl 0223.47007
[21] Smith, K. T., Inequalities for formally positive integro-differential forms, Bull. A.M.S., 67, 368-370 (1961) · Zbl 0103.07602
[22] Wilcox, C. H., Wave operators and asymplotic solutions of wave propagation problems of classical physics, Arch. Rational Mech. Anal., 22, 37-78 (1966) · Zbl 0159.14302
[23] Wilcox, C. H., Steady-state wave propagation in homogeneous anisotropic media, Arch. Rational Mech. Anal., 25, 201-242 (1967) · Zbl 0159.14401
[24] Wilcox, C. H., Transient wave propagation in homogeneous anisotropic media, Arch. Rational Mech. Anal., 37, 323-343 (1970) · Zbl 0201.43201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.