×

zbMATH — the first resource for mathematics

Similarity relations and fuzzy orderings. (English) Zbl 0218.02058

MSC:
03E72 Theory of fuzzy sets, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kaufmann, A.; Précigout, M., ()
[2] Sokal, R.R.; Sneath, P.H.A., ()
[3] Williams, E.J., ()
[4] Nilsson, N., ()
[5] Fu, K.S., ()
[6] Watanabe, S., ()
[7] ()
[8] Shepard, R.N.; Shepard, R.N., Analysis of proximities: multidimensional scaling with an unknown distance function, Psychometrica, Psychometrica, 27, 219-246, (1962) · Zbl 0129.12103
[9] Kruskal, J.B., Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrica, 29, 1-27, (1964) · Zbl 0123.36803
[10] Ward, J.H., Hierarchical grouping to optimize an objective function, Amer. statist. assoc., 58, 236-244, (1963)
[11] Debreu, G., Theory of value, () · Zbl 0193.20205
[12] Luce, R.D.; Raiffa, H., ()
[13] Zadeh, L.A., Fuzzy sets, Information and control, 8, 338-353, (June 1965)
[14] Tamura, S.; Higuchi, S.; Tanaka, K., Pattern classification based on fuzzy relations, (1970), Osaka University New York, To be published in System Science and Cybernetics
[15] Aczél, J., ()
[16] (Ivănescu), P.L. Hammer; Rudeanu, S., ()
[17] Santos, E.G., Maximin automata, Information and control, 13, 363-377, (Oct 1968)
[18] Bellman, R.E.; Zadeh, L.A., Decision-making in a fuzzy environment, (), (to appear in Management Science) · Zbl 0224.90032
[19] Armstrong, W.E., Uncertainty and the utility function, Economic J., 58, 1-10, (1948)
[20] May, K.O., Intransitivity utility and the aggregation of preference patterns, Econometrica, 22, 1-13, (Jan 1954)
[21] Luce, R.D., Semiorders and a theory of utility discrimination, Econometrica, 24, 178-191, (1956) · Zbl 0071.14006
[22] Johnson, S.C., Hierarchical clustering schemes, Psychometrica, 32, 241-254, (Sept 1967)
[23] Lyons, J., ()
[24] Baer, R.M.; Osterby, O., Algorithms over partially ordered sets, Bit, 9, 97-118, (1969) · Zbl 0174.20802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.