zbMATH — the first resource for mathematics

Über Lösungen einer Erneuerungsgleichung. (German) Zbl 0218.60086

60K20 Applications of Markov renewal processes (reliability, queueing networks, etc.)
Full Text: DOI
[1] W. Feller, On the integral equation of renewal theory. Ann. Math. Statist.2 (1941) 243–267. · Zbl 0026.23001 · doi:10.1214/aoms/1177731708
[2] W. Feller, An Introduction to Probability Theory and Its Applications, Bd. 2 John Wiley & Sons, Inc. New York 1966. · Zbl 0138.10207
[3] P. R. Halmos, Measure Theory. D. van Nostrand Company, Inc., Princeton 1956.
[4] S. Karlin, On the renewal equation. Pacific J. Math.5 (1955) 229–257. · Zbl 0067.34902
[5] M. Schäl, Markoffsche Erneuerungsprozesse mit Hilfspfaden. Dissertation Hamburg 1969.
[6] M. Schäl, Rates of convergence in Markov renewal processes with auxiliary paths. Z. Wahrscheinlichkeitstheorie verw. Geb.16, 29–38 (1970). · Zbl 0192.54602 · doi:10.1007/BF00538765
[7] W. L. Smith, Renewal theory and its ramifications. J. R. Statist. Soc.B, 20 (1958) 243–284. · Zbl 0091.30101
[8] W. L. Smith, A theorem of functions of characteristic functions and its application to some renewal theoretic random walk problems. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability Vol. II Part II (1967) 265–309. · Zbl 0209.49301
[9] C. J. Stone, On absolutely continuous components and renewal theory. Ann. Math. Statist.37 (1966) 271–275. · Zbl 0147.16205 · doi:10.1214/aoms/1177699617
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.