zbMATH — the first resource for mathematics

Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Räumen. (German) Zbl 0219.32013

32M15 Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects)
32A40 Boundary behavior of holomorphic functions of several complex variables
Full Text: DOI EuDML
[1] Bott, R.: Homogeneous vector bundles. Ann. Math.66, 203-248 (1967). · Zbl 0094.35701
[2] Cartan, É.: Sur la détermination d’un système orthogonal complet dans un espace de Riemann symétrique clos. Rend. Circ. Math. Palermo53, 217-252 (1929). · JFM 55.1029.01
[3] ?: Sur les domaines bornés homogènes de l’espace den variables complexes. Abh. Math. Sem. Univ. Hamburg11, 116-162 (1935). · Zbl 0011.12302
[4] Harish-Chandra: Representations of semisimple Lie groups IV, V, VI. Amer. J. Math.77, 743-777 (1955);78, 1-41, 564-628 (1956). · Zbl 0066.35603
[5] Helgason, S.: Differential geometry and symmetric spaces. New York: Academic Press 1962. · Zbl 0111.18101
[6] Hua, L. K.: Harmonic analysis of functions of several complex variables in the classical domains. Amer. Math. Soc. Translation, Providence, Rhode Island 1963. · Zbl 0112.07402
[7] Koecher, M.: Jordan algebras and their applications. Univ. of Minnesota, 1962 (vervielfältigt). · Zbl 0128.03101
[8] Koranyi, A., Wolf, J.: Realization of hermitian symmetric spaces as generalized half planes. Ann. Math.81, 265-288 (1965). · Zbl 0137.27402
[9] Moore, C. C.: Compactifications of symmetric spaces II: the Cartan domains. Amer. J. Math.86, 358-378 (1964). · Zbl 0156.03202
[10] Stiefel, E.: Kristallographische Bestimmung der Charaktere der geschlossenen Lie’schen Gruppen. Comment. Math. Helv.17, 165-200 (1944). · Zbl 0061.04503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.