×

zbMATH — the first resource for mathematics

Analyzing the nonlinear time series of turbulent flows with kernel interval regression machine. (English) Zbl 1329.76129
MSC:
76F55 Statistical turbulence modeling
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
76M35 Stochastic analysis applied to problems in fluid mechanics
62H86 Multivariate analysis and fuzziness
62M86 Inference from stochastic processes and fuzziness
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112088001818 · Zbl 0643.76066 · doi:10.1017/S0022112088001818
[2] Bernard P. S., Turbulent Flow: Analysis, Measurement, and Prediction (2002)
[3] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032 · doi:10.1017/S0022112095000978
[4] DOI: 10.1007/BF02506062 · doi:10.1007/BF02506062
[5] DOI: 10.1023/A:1014077330409 · Zbl 1094.76528 · doi:10.1023/A:1014077330409
[6] DOI: 10.1029/WR023i007p01300 · doi:10.1029/WR023i007p01300
[7] DOI: 10.1007/BF01585599 · doi:10.1007/BF01585599
[8] DOI: 10.1142/S0218127491000579 · Zbl 0876.58045 · doi:10.1142/S0218127491000579
[9] DOI: 10.1017/S0022112093002630 · doi:10.1017/S0022112093002630
[10] DOI: 10.1007/978-1-4757-2440-0 · doi:10.1007/978-1-4757-2440-0
[11] Vapnik V., Statistical Learning Theory (1998) · Zbl 0935.62007
[12] Tanaka H., IEEE Transactions on Systems, Man and Cybernetics 12 pp 903–
[13] DOI: 10.2333/jbhmk.16.1 · Zbl 04538823 · doi:10.2333/jbhmk.16.1
[14] DOI: 10.1109/91.728436 · doi:10.1109/91.728436
[15] DOI: 10.1016/S0165-0114(02)00514-6 · Zbl 1026.62076 · doi:10.1016/S0165-0114(02)00514-6
[16] DOI: 10.1016/0167-2789(89)90074-2 · Zbl 0671.62099 · doi:10.1016/0167-2789(89)90074-2
[17] DOI: 10.1016/0165-0114(95)00220-0 · doi:10.1016/0165-0114(95)00220-0
[18] DOI: 10.1016/0165-0114(93)90372-O · Zbl 0792.62087 · doi:10.1016/0165-0114(93)90372-O
[19] DOI: 10.1016/S0040-1625(98)00047-X · doi:10.1016/S0040-1625(98)00047-X
[20] DOI: 10.1016/S0165-0114(98)00286-3 · doi:10.1016/S0165-0114(98)00286-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.