×

zbMATH — the first resource for mathematics

On the maximality of sums of nonlinear monotone operators. (English) Zbl 0222.47017

MSC:
47H05 Monotone operators and generalizations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Edgar Asplund, Averaged norms, Israel J. Math. 5 (1967), 227 – 233. · Zbl 0153.44301
[2] Edgar Asplund, Positivity of duality mappings, Bull. Amer. Math. Soc. 73 (1967), 200 – 203. · Zbl 0149.36202
[3] Felix E. Browder, Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces, Trans. Amer. Math. Soc. 118 (1965), 338 – 351. · Zbl 0138.39903
[4] Felix E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 780 – 785. · Zbl 0138.39902
[5] -, Problèmes nonlinéaires, Univ. of Montreal Press, Montreal, 1966.
[6] Felix E. Browder, Nonlinear maximal monotone operators in Banach space, Math. Ann. 175 (1968), 89 – 113. · Zbl 0159.43901
[7] -, Nonlinear variational inequalities and maximal monotone mappings in Banach spaces, Math. Ann. 185 (1970), 81-90.
[8] Philip Hartman and Guido Stampacchia, On some non-linear elliptic differential-functional equations, Acta Math. 115 (1966), 271 – 310. · Zbl 0142.38102
[9] Christian Lescarret, Cas d’addition des applications monotones maximales dans un espace de Hilbert, C. R. Acad. Sci. Paris 261 (1965), 1160 – 1163 (French). · Zbl 0138.08204
[10] George J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341 – 346. · Zbl 0111.31202
[11] R. T. Rockafellar, Extension of Fenchel’s duality theorem for convex functions, Duke Math. J. 33 (1966), 81 – 89. · Zbl 0138.09301
[12] R. T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497 – 510. · Zbl 0145.15901
[13] R. T. Rockafellar, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970), 209 – 216. · Zbl 0199.47101
[14] R. T. Rockafellar, Local boundedness of nonlinear, monotone operators, Michigan Math. J. 16 (1969), 397 – 407. · Zbl 0175.45002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.