Functions of bounded boundary rotation. (English) Zbl 0224.30024


30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
Full Text: DOI


[1] P. L. Duren, H. S. Shapiro, A. L. Shields,Singular measures and domains not of Smirnov type, Duke Math. J.33 (1966), 247–254. · Zbl 0174.37501
[2] Mark Finkelstein,On the relation between measures and convex analytic functions, Illinois J. Math.12 (1968), 175–183. · Zbl 0157.39902
[3] V. Paatero,Über die Konforme Abbildungen von Gebeiten deren Ränder von beschränkter Drehung sind, Ann. Acad. Sci. Fenn. Ser. A 33 (1933), No. 9. · Zbl 0005.25104
[4] Bernard Pinchuk,A variational method for functions of bounded boundary rotation, Trans. Amer. Math. Soc.138 (1969), 107–113. · Zbl 0185.32701
[5] Christian Pommerenke,Linear-invariente Familien analytischer Funktionen I, Math. Ann.155 (1964), 108–154. · Zbl 0128.30105
[6] M. S. Robertson,Radii of star-likeness and close-to-convexity, Proc. Amer. Math. Soc.16 (1965), 847–852. · Zbl 0152.27301
[7] M. S. Robertson,Coefficients of functions with bounded boundary rotation, Canad. J. Math.21 (1969), 1477–1482. · Zbl 0188.38203
[8] M. S. Robertson,Univalent functions f(z) for which zf’(z) is spirallike, Michigan Math. J.16 (1969), 97–101. · Zbl 0175.36602
[9] W. C. Royster,On the univalence of a certain integral, Michigan Math. J.12 (1965), 385–387. · Zbl 0193.37301
[10] A. Schild,On a class of univalent starshaped mappings, Proc. Amer. Math. Soc.9 (1958) 751–757. · Zbl 0087.07703
[11] Ted J. Suffridge,Convolutions of convex functions, J. Math. Mech.15 (1966), 795–804. · Zbl 0154.32802
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.