×

zbMATH — the first resource for mathematics

The currents defined by analytic varieties. (English) Zbl 0224.32008

MSC:
32C30 Integration on analytic sets and spaces, currents
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32A27 Residues for several complex variables
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abhyankar, S. S.,Local analytic geometry. Academic Press, New York 1964. · Zbl 0205.50401
[2] Almgren, F. J., Jr., Measure theoretic geometry and elliptic variational problems.Bull. Amer. Math. Soc., 75 (1968), 285–304. · Zbl 0185.35202
[3] Andreotti, A. &Norguet, F., La convexité holomorphe dans l’espace analytique des cycles d’une variété algébrique.Ann. Scuola Norm. Pisa, 21 (1967), 31–82. · Zbl 0176.04001
[4] Bloom, T. &Herrera, M., De Rham cohomology of an analytic space.Invent. Math., 7 (1969), 275–296. · Zbl 0175.37301 · doi:10.1007/BF01425536
[5] Borel, A. &Haefliger, A., La classe d’homologie fondamentale d’un espace analytique.Bull. Soc. Math. France., 89 (1961), 461–513. · Zbl 0102.38502
[6] Draper, R. N., Intersection theory in analytic geometry.Math. Ann., 180 (1969), 175–204. · Zbl 0167.06903 · doi:10.1007/BF01350737
[7] Federer, H.,Geometric measure theory. Springer-Verlag, New York, 1969. · Zbl 0176.00801
[8] –, Some theorems on integral currents,Trans. Amer. Math. Soc., 117 (1965), 43–67. · Zbl 0136.18204 · doi:10.1090/S0002-9947-1965-0168727-0
[9] Gunning, R. C. &Rossi, H.,Analytic functions of several complex variables. Prentice-Hall, Englewood Cliffs, N.J. 1965. · Zbl 0141.08601
[10] Hurewicz, W. & Wallman, H.,Dimension theory. Princeton, 1941. · JFM 67.1092.03
[11] King, J., Families of intermediate jacobians. Thesis (Berkeley, 1969).
[12] Lelong, P., Fonctions plurisousharmoniques ...Colloque sur les fonctions de plusieurs variables, Bruxelles. Masson, Paris, 1953. · Zbl 0052.30902
[13] –, Intégration sur un ensemble analytique complexe,Bull. Soc. Math. France., 85 (1957), 239–262. · Zbl 0079.30901
[14] Lelong, P., Propriétés métriques des ensembles analytiques complexes.Seminaire Lelong, 1965/66 no. 2. Paris 1966.
[15] de Rham, G.,Variétés différentiables. Hermann, Paris, 1960.
[16] –, Currents in an analytic complex manifold.Seminar on analytic functions, Vol. I. Institute for Advanced Study, Princeton, 1957.
[17] Saks, S.,Theory of the integral. Dover, New York, 1964. · Zbl 1196.28001
[18] Schwartz, L.,Théorie des distributions. Hermann. Paris, (New edition), 1966.
[19] Shiffman, B., On the removal of singularities of analytic sets,Mich. Math. J., 15 (1968), 111–120. · Zbl 0165.40503 · doi:10.1307/mmj/1028999912
[20] –, On the continuation of analytic curves.Math. Ann., 184 (1970), 268–274. · Zbl 0185.33403 · doi:10.1007/BF01350855
[21] –, On the continuation of analytic sets.Math Ann., 185 (1970), 1–12. · Zbl 0189.09701 · doi:10.1007/BF01350755
[22] Stoll, W., The multiplicity of a holomorphic map.Invent. Math., 2 (1966), 15–58. · Zbl 0158.08403 · doi:10.1007/BF01403389
[23] –, The continuity of the fiber integral.Math. Z., 95 (1967), 87–138. · Zbl 0148.31904 · doi:10.1007/BF01111553
[24] –, The fiber integral is constant.Math. Z., 104 (1968), 65–73. · Zbl 0164.09302 · doi:10.1007/BF01114919
[25] Stolzenberg, G.,Volumes, limits, and extensions of analytic varieties. Springer-Verlag, New York, 1966. · Zbl 0142.33801
[26] Thie, P., The Lelong number of a point of a complex analytic set,Math. Ann., 172 (1967), 269–312. · Zbl 0158.32804 · doi:10.1007/BF01351593
[27] Van der Waerden, B. L.,Modern algebra Vol. I. Ungar, New York, 1953.
[28] Weil, A.,Variétés Kählérienes. Hermann, Paris, 1958.
[29] Whitney, H., Tangents to an analytic variety,Ann. of Math., 81 (1965), 496–549. · Zbl 0152.27701 · doi:10.2307/1970400
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.