×

Duale Charakterisierungen der Schwartz-Räume. (Dual characterization of Schwartz spaces). (German) Zbl 0225.46007


MSC:

46A11 Spaces determined by compactness or summability properties (nuclear spaces, Schwartz spaces, Montel spaces, etc.)
46A03 General theory of locally convex spaces
46A20 Duality theory for topological vector spaces
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Butzmann, H. P.: Über diec-Reflexivität vonC c(X). Erscheint demnächst.
[2] Cook, C. H., Fischer, H. R.: Equicontinuity and continuous convergence. Math. Ann.159, 94-104 (1965). · Zbl 0129.38001
[3] Floret, K.: Lokalkonvexe Sequenzen mit kompakten Abbildungen. J. Reine Angew. Math.247, 155-195 (1971). · Zbl 0209.43001
[4] Grothendieck, A.: Sur les espaces (F) et (DF). Summa Brasil. Math.3, 57-123 (1954). · Zbl 0058.09803
[5] Horvath, J.: Topological vector spaces and distributions I. Reading, Mass.: Addison-Wesley 1966. · Zbl 0143.15101
[6] Jarchow, H.: Marinescu-Räume. Comment. Math. Helv.44, 138-163 (1969). · Zbl 0175.41501
[7] ?? Dualität und Marinescu-Räume. Math. Ann.182, 134-144 (1969). · Zbl 0175.41502
[8] ?? Zur Theorie der quasitonnelierten Räume. Math. Ann.191, 271-278 (1971). · Zbl 0207.11902
[9] Köthe, G.: Topologische lineare Räume I. 2. Aufl. Berlin-Heidelberg-New York: Springer 1966. · Zbl 0137.31301
[10] Kutzler, K.: Bemerkungen über unendlichdimensionale separierte Limesvektorräume und Limesgruppen. Erscheint demnächst in J. Reine Angew. Math. · Zbl 0231.46028
[11] Schroder, M.: Continuous convergence in a Gelfand theory for topological algebras. Thesis, Queen’s University, Kingston (Canada) (1971).
[12] Terzio?lu, T.: On Schwartz spaces. Math. Ann.182, 236-242 (1969). · Zbl 0179.45501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.