×

zbMATH — the first resource for mathematics

Hamiltonian circuits in some maps on the torus. (English) Zbl 0226.05109

MSC:
05C40 Connectivity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Altshuler, A., Polyhedral realization in R^{3} of triangulations of the torus and 2-manifolds in convex 4-polytopes, (), (Hebrew, English summary) · Zbl 0235.57001
[2] Altshuler, A., Polyhedral realization in R^{3} of triangulations of the torus and 2-manifolds in cyclic 4-polytopes, Discrete math., 1, 211-238, (1971) · Zbl 0235.57001
[3] Brahana, H.S., Regular maps on an anchor ring, Am. J. math., 48, 225-240, (1926) · JFM 52.0120.01
[4] Coxeter, H.S.M.; Moser, W.O.J., Generators and relations for discrete groups, (1965), Springer Berlin · Zbl 0133.28002
[5] Duke, R.A., Geometric embedding of complexes, Am. math. monthly, 77, 597-603, (1970) · Zbl 0217.49103
[6] R.A. Duke, On the genus and connectivity of Hamiltonian graphs, to appear. · Zbl 0234.05103
[7] Errera, A., Sur LES polyédres réguliers de l’analysis situs, Acad. roy. belg. cl. sci. mem. coll. 8^{0}, 7, 2, 1-17, (1922) · JFM 48.0663.06
[8] Ringel, G., Das geschlecht des vollständigen paaren graphen, Abh. math. sem. univ. Hamburg, 28, 139-150, (1965) · Zbl 0132.21203
[9] Threlfall, W., Gruppenbilder, Abh. Sächs. akad. wiss. math. phys. kl., 41, 1-59, (1932) · JFM 58.0132.01
[10] Whitney, H., A theorem on graphs, Ann. math., 32, 378-390, (1931) · JFM 57.0727.03
[11] Youngs, J.W.T., Minimal embeddings and the genus of a graph, J. math. mech., 12, 303-315, (1963) · Zbl 0109.41701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.