zbMATH — the first resource for mathematics

The convergence of an algorithm for solving sparse nonlinear systems. (English) Zbl 0227.65038

65H10 Numerical computation of solutions to systems of equations
65H99 Nonlinear algebraic or transcendental equations
Full Text: DOI
[1] C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math. Comp. 19 (1965), 577 – 593. · Zbl 0131.13905
[2] C. G. Broyden, A new method of solving nonlinear simultaneous equations, Comput. J. 12 (1969/1970), 94 – 99. · Zbl 0164.45101
[3] C. G. Broyden, The convergence of single-rank quasi-Newton methods, Math. Comp. 24 (1970), 365 – 382. · Zbl 0208.18403
[4] A. Chang, Applications of Sparse Matrix Methods in Electric Power Systems Analysis, Proc. Sympos. on Sparse Matrices and Their Applications (IBM Watson Research Center, 1968), RA 1 #11707, Watson Research Center, Yorktown Heights, New York, 1969.
[5] D. F. Davidenko, The application of the method of the variation of a parameter to the construction of iteration formulae of heightened precision for the determination of numerical solutions of non-linear integral equations, Dokl. Akad. Nauk SSSR 162 (1965), 499 – 502 (Russian).
[6] Allen A. Goldstein, Constructive real analysis, Harper & Row, Publishers, New York-London, 1967. · Zbl 0189.49703
[7] F. G. Gustavson, W. Liniger & R. Willoughby, ”Symbolic generation of an optimal Crout algorithm for sparse systems of linear equations,” J. Assoc. Comput. Mach., v. 17, 1970, pp. 87-109. · Zbl 0187.09703
[8] R. P. Tewarson, The Gaussian Elimination and Sparse Systems, Proc. Sympos. on Sparse Matrices and Their Applications (IBM Watson Research Center, 1968), Watson Research Center, Yorktown Heights, New York, 1968. · Zbl 0174.46802
[9] W. F. Tinney & C. E. Hart, ”Power flow solutions by Newton’s method,” IEEE Trans., v. PAS-86, 1967, pp. 1449-1460.
[10] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. · Zbl 0258.65037
[11] John M. Bennett, Triangular factors of modified matrices, Numer. Math. 7 (1965), 217 – 221. · Zbl 0132.36204
[12] J. E. Dennis Jr., On the convergence of Newton-like methods, Numerical methods for nonlinear algebraic equations (Proc. Conf., Univ. Essex, Colchester, 1969) Gordon and Breach, London, 1970, pp. 163 – 181.
[13] Функционал\(^{\приме}\)ный анализ в нормированных пространствах, Государств. Издат. Фис.-Мат. Лит., Мосцощ, 1959 (Руссиан). · Zbl 0127.06102
[14] L. K. Schubert, Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian, Math. Comp. 24 (1970), 27 – 30. · Zbl 0198.49402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.