×

Decay and scattering of solutions of a nonlinear relativistic wave equation. (English) Zbl 0228.35055


MSC:

35L70 Second-order nonlinear hyperbolic equations
35P25 Scattering theory for PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Chadam, Ann. Scuola Norm. Sup., Pisa.
[2] Chadam, J. Applicable Analysis
[3] and , Methods of Mathematical Physics, Vol. II, Interscience Publishers, 1962, p. 695.
[4] Goodman, Proc. A.M.S. 15 pp 653– (1964)
[5] Jörgens, Math. Z. 77 pp 295– (1961)
[6] Morawetz, Proc. Roy. Soc. A 306 pp 291– (1968)
[7] Morawetz, Comm. Pure Appl. Math. 16 pp 353– (1963)
[8] Morawetz, Bull. A.M.S.
[9] Nelson, Trans. A. M.S. 154 pp 227– (1971)
[10] Roffman, Bull. A.M.S. 76 pp 70– (1970)
[11] Quantization and dispersion for nonlinear relativistic equations, Proc. Conf. Mathematical Theory of Elementary Particles (Dedham, Mass. 1965), M.I.T. Press, pp. 79–108.
[12] Segal, Ann. Sci. École Norm. Sup. (4) 1 pp 459– (1968)
[13] Strauss, J. Functional Analysis 2 pp 409– (1968)
[14] Decay of solutions of hyperbolic equations with localized nonlinear terms, Atti del Convegno sui Problemi di Evoluzione (Ist. Di Alta Mat., Rome 1970).
[15] von Wahl, Math. Zeit. 114 pp 281– (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.