×

Harmonics on Stiefel manifolds and generalized Hankel transforms. (English) Zbl 0235.43012


MSC:

43A85 Harmonic analysis on homogeneous spaces
43A65 Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis)
43A17 Analysis on ordered groups, \(H^p\)-theory
43A15 \(L^p\)-spaces and other function spaces on groups, semigroups, etc.
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] S. Bochner, Theta relations with spherical harmonics, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 804 – 808. · Zbl 0044.07501
[2] E. Cartan, Sur la determination d’un système orthogonal complet dans un espace de Riemann symétrique clos, Rend. Circ. Mat. Palermo 53 (1929), 217-252. · JFM 55.1029.01
[3] K. I. Gross and R. A. Kunze, Fourier decompositions of certain representations, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969 – 1970), Dekker, New York, 1972, pp. 119 – 139. Pure and Appl. Math., Vol. 8. · Zbl 0268.43010
[4] SigurÄ’ur Helgason, Invariants and fundamental functions, Acta Math. 109 (1963), 241 – 258. · Zbl 0112.26303
[5] Carl S. Herz, Bessel functions of matrix argument, Ann. of Math. (2) 61 (1955), 474 – 523. · Zbl 0066.32002
[6] Daniel A. Levine, Systems of singular integral operators on spheres, Trans. Amer. Math. Soc. 144 (1969), 493 – 522. · Zbl 0196.15803
[7] Hans Maass, Spherical functions and quadratic forms, J. Indian Math. Soc. (N.S.) 20 (1956), 117 – 162. · Zbl 0072.08401
[8] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[9] E. M. Stein, Some problems in harmonic analysis, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 3 – 20.
[10] Joseph A. Shalika, Representation of the two by two unimodular group over local fields, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, 2004, pp. 1 – 38. · Zbl 1076.11032
[11] André Weil, Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964), 143 – 211 (French). · Zbl 0203.03305
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.