zbMATH — the first resource for mathematics

Non-linear potentials and approximation in the mean by analytic functions. (English) Zbl 0236.31010

31B15 Potentials and capacities, extremal length and related notions in higher dimensions
31D05 Axiomatic potential theory
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
Full Text: DOI EuDML
[1] Adams, D.R.: Traces of potentials. II. Indiana Univ. Math. J., to appear. · Zbl 0265.46039
[2] Adams, D.R., Meyers, N.G.: Bessel potentials. Inclusion relations among classes of exceptional sets. Bull. Amer. Math. Soc.77, 968-970 (1970). · Zbl 0232.31008
[3] Adams, D.R., Meyers, N.G.: Bessel potentials. Inclusion relations among classes of exceptional sets. Indiana Univ. Math. J., to appear. · Zbl 0232.31008
[4] Adams, D.R., Polking, J.C.: The equivalence of two definitions of capacity. Proc. Amer. Math. Soc., to appear. · Zbl 0251.31005
[5] Ahlfors, L., Beurling, A.: Conformal invariants and function-theoretic null-sets. Acta Math.83, 101-129 (1950). · Zbl 0041.20301
[6] Bagby, T.:L p approximation by analytic functions. J. Approximation Theory5, 401-404 (1972). · Zbl 0244.30037
[7] Bagby, T.: Quasi topologies and rational approximation. J. Functional Analysis10, 259-268 (1972). · Zbl 0266.30024
[8] Bers, L.: An approximation theorem. J. Analyse Math.14, 1-4 (1965). · Zbl 0134.05304
[9] Brelot, M.: Sur les ensembles effilés. Bull. Sci. Math.68, 12-36 (1944). · Zbl 0028.36201
[10] Brelot, M.: Introduction axiomatique de l’effilément. Ann. Mat. Pura Appl.59, 77-95 (1962). · Zbl 0108.26003
[11] Calderón, A.P.: Lebesgue spaces of differentiable functions and distributions. Proc. Sympos. Pure Math.4, 33-49. Providence, R.I.: Amer. Math. Soc. 1961. · Zbl 0195.41103
[12] Carleson, L.: Mergelyan’s theorem on uniform polynomial approximation. Math. Scandinav.15, 167-175 (1964). · Zbl 0163.08601
[13] Carleson, L.: Selected problems on exceptional sets. Princeton, N.J.: Van Nostrand 1967. · Zbl 0189.10903
[14] Choquet, G.: Sur les points d’effilément d’un ensemble. Application à l’étude de la capacité. Ann. Inst. Fourier (Grenoble)9, 91-101 (1959). · Zbl 0093.29702
[15] Deny, J.: Les potentiels d’energie finie. Acta Math.82, 107-183 (1950). · Zbl 0034.36201
[16] Deny, J.: Sur la convergence de certaines intégrales de la théorie du potentiel. Arch. der Math.5, 367-370 (1954). · Zbl 0057.33104
[17] Deny, J., Lions, J.L.: Les espaces du type de Beppo Levi. Ann. Inst. Fourier (Grenoble)5, 305-370 (1953-1954). · Zbl 0065.09903
[18] Fuglede, B.: Le théorème du minimax et la théorie fine du potentiel. Ann. Inst. Fourier (Grenoble)15, 65-88 (1965). · Zbl 0128.33103
[19] Fuglede, B.: Quasi topology and fine topology. Séminaire Brelot-Choquet-Deny, 10e année (1965-1966).
[20] Fuglede, B.: Applications du théorème minimax à l’étude de diverses capacités. C.R. Acad. Sci. Paris, Sés. A266, 921-923 (1968). · Zbl 0159.40801
[21] Harvey, R., Polking, J.C.: A notion of capacity which characterizes removable singularities. Trans. Amer. Math. Soc.169, 183-195 (1972). · Zbl 0249.35012
[22] Havin, V.P.: Approximation in the mean by analytic functions. Doklady Akad. Nauk SSSR178, 1025-1028 (1968). (Soviet Math. Doklady9, 245-248 (1968).)
[23] Havin, V.P., Maz’ja, V.G.: On approximation in the mean by analytic functions. Vestnik Leningrad. Univ.23, no.13, 62-74 (1968) [Russian].
[24] Havin, V.P., Maz’ja, V.G.: A non-linear analogue of the Newtonian potential and metric properties of the (p, l)-capacity. Doklady Akad. Nauk SSSR194, 770-773 (1970). (Soviet Math. Doklady11, 1294-1298 (1970).)
[25] Havin, V.P., Maz’ja, V.G.: Non-linear potential theory. [Russian], Uspehi Mat. Nauk,26 (6) 67-138 (1972). Applications of (p, l)-capacity to some problems in the theory of exceptional sets [Russian.] mat. Sb., to appear.
[26] Hedberg, L.I.: The Stone-Weierstrass theorem in certain Banach algebras of Fourier type. Ark. Mat.6, 77-102 (1965). · Zbl 0193.10401
[27] Hedberg, L.I.: Approximation in the mean by analytic functions. Trans. Amer. Math. Soc.163, 157-171 (1972). · Zbl 0236.30045
[28] Hedberg, L.I.: Bounded point evaluations and capacity. J. Functional Analysis10, 269-280 (1972). · Zbl 0266.30023
[29] Hedberg, L.I.: Approximation in the mean by analytic and harmonic functions and capacities. Preliminary report. Uppsala Univ. Dept. of Math. Feb. 1971. · Zbl 0219.31012
[30] Hedberg, L.I.: Approximation in the mean by solutions of elliptic equations. Duke Math. J., to appear. · Zbl 0283.35035
[31] Landkof, N.S.: Foundations of modern potential theory. Moscow: Nauka 1966. (English translation, Springer 1972.) · Zbl 0253.31001
[32] Maz’ja, V.G.:p-conductance and theorems of imbedding certain function spaces into the spaceC. Doklady Akad. Nauk SSSR140, 299-302 (1961). (Soviet Math. Doklady2, 1200-1203 (1961).
[33] Maz’ja, V.G.: On the continuity at a boundary point of the solution of quasi-linear elliptic equations. [Russian.] Vestnik Leningrad. Univ.25, no.13, 42-55 (1970). Correction, ibid. Maz’ja, V.G.: On the continuity at a boundary point of the solution of quasi-linear elliptic equations. [Russian.] Vestnik Leningrad. Univ.27 no.1, 160 (1972).
[34] Meyers, N.G.: A theory of capacities for potentials of functions in Lebesgue classes. Math. Scandinav.26, 255-292 (1970). · Zbl 0242.31006
[35] Meyers, N.G.: Continuity of Bessel potentials. Israel J. Math.11, 271-283 (1972). · Zbl 0256.31009
[36] Polking, J.C.: Approximation inL p by solutions of elliptic partial differential equations. Amer. J. Math., to appear. · Zbl 0266.35026
[37] Re?etnjak, Ju.G.: On the concept of capacity in the theory of functions with generalized derivatives. Sibirsk. Mat. ?.10, 1109-1138 (1969).
[38] Serrin, J.: Local behavior of solutions of quasi-linear equations. Acta Math.111, 247-302 (1964). · Zbl 0128.09101
[39] Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton Univ. Press 1970. · Zbl 0207.13501
[40] Vitu?kin, A.G.: Analytic capacity of sets in problems of approximation theory. Uspehi Math. Nauk22, 141-199 (1967). (Russian Math. Surveys22 139-200 (1967).)
[41] Wallin, H.: A connection between ?-capacity andL p -classes of differentiable functions. Ark. Mat.5, 331-341 (1964). · Zbl 0135.32401
[42] Ziemer, W.P.: Extremal length as a capacity. Michigan Math. J.17, 117-128 (1970). · Zbl 0183.39104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.