×

zbMATH — the first resource for mathematics

Analytic subgroups of group varieties. (English) Zbl 0237.14015

MSC:
14L10 Group varieties
11J81 Transcendence (general theory)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Bombieri, E.: Algebraic values of meromorphic maps. Inventiones Math.10, 267-287 (1970). · Zbl 0214.33702 · doi:10.1007/BF01418775
[2] Cassels, J.W.S.: An introduction to diophantine approximation. Cambridge Tracts 45 (1957). · Zbl 0077.04801
[3] Federer, H.: Geometric measure theory. Berlin-Heidelberg-New York: Springer 1969. · Zbl 0176.00801
[4] Lang, S.: Introduction to transcendental numbers. Reading, Mass. Addison Wesley 1966. · Zbl 0144.04101
[5] Lelong, P.: Fonctions entières (n variables) et fonctions plurisousharmoniques d’ordre fini dans Cn. J. d’Analyse Math.12, 365-407 (1964). · Zbl 0126.29602 · doi:10.1007/BF02807441
[6] ?: Propriétés métriques des variétés analytiques complexes définies par une equation. Ann. E.N.S.67, 393-419 (1950).
[7] ?: Intégration sur un ensemble analytique complexe. Bull. Soc. Math. France85, 239-262 (1957). · Zbl 0079.30901
[8] Schneider, T.: Ein Satz über ganzwertige Funktionen als Prinzip für Transzendenzbeweise. Math. Annalen121, 131-140 (1949-1950). · Zbl 0034.31702 · doi:10.1007/BF01329621
[9] Schmidt, W.: A metrical theorem in diophantine approximation. Canadian J. Math.12, 619-631 (1960). · Zbl 0097.26205 · doi:10.4153/CJM-1960-056-0
[10] Stoll, W.: Mehrfache Integrale auf komplexen Mannigfaltigkeiten. Math. Z.57, 116-154 (1952). · Zbl 0047.32401 · doi:10.1007/BF01192920
[11] Thie, P.R.: The Lelong number of a point of a complex analytic set. Math. Ann.172, 269-312 (1967). · Zbl 0158.32804 · doi:10.1007/BF01351593
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.