×

zbMATH — the first resource for mathematics

Pseudodifferential operators on Hilbert bundles. (English) Zbl 0238.35077

MSC:
35S05 Pseudodifferential operators as generalizations of partial differential operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atiyah, M.F, K-theory, (1967), Benjamin New York · Zbl 0735.57001
[2] Atiyah, M.F, Bott periodicity and the index of elliptic operators, Quart. J. math. Oxford ser., 19, 113-140, (1960) · Zbl 0159.53501
[3] Atiyah, M.F; Singer, I.M, The index of elliptic operators: I, Ann. of math., 87, 484-530, (1968) · Zbl 0164.24001
[4] de Monvel, L.Boutet, Boundary problems for pseudo-differential operators, Acta math., 126, 11-52, (1971) · Zbl 0206.39401
[5] Hormander, L, On the index of pseudo-differential operators, (), Reihe A, Helf 8 · Zbl 0206.39303
[6] Kohn, J; Nirenberg, L, An algebra of pseudo differential operators, Comm. pure appl. math., 18, 269-306, (1965) · Zbl 0171.35101
[7] Nirenberg, L, Pseudo-differential operators, (), 149-168
[8] Palais, R, Foundations of global non-linear analysis, (1968), Benjamin New York · Zbl 0164.11102
[9] de Rham, G, Variétés différentiables, act. sci. et ind. 1222, (1954), Hermann Paris
[10] Segal, G.B, Fredholm complexes, Quart. J. math. Oxford ser., 10, 123-125, (1970) · Zbl 0213.25403
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.