×

zbMATH — the first resource for mathematics

On the number of solutions to the complementarity problem and spanning properties of complementary cones. (English) Zbl 0241.90046

MSC:
90C20 Quadratic programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cottle, R.W.; Dantzig, G.B., Linear algebra and appl., 1, 103-125, (1968)
[2] Dantzig, G.B., Linear programming and extensions, (1963), Princeton University Press Princeton, New Jersey · Zbl 0108.33103
[3] Dantzig, G.B.; Cottle, R.W., Nonlinear programming, (), 55-73 · Zbl 0178.22801
[4] D. Gale, Private communication.
[5] Gale, D., The theory of linear economic models, (1960), McGraw-Hill New York · Zbl 0114.12203
[6] Gale, D.; Nikaido, H., Math. ann., 159, 81-93, (1965)
[7] Kuhn, H.W., Proc. nat. acad. sci., U.S.A., 47, 1657-1662, (1961)
[8] Lemke, C.E., Management sci., 11, 681-689, (1965)
[9] Lemke, C.E., RPI math. report no. 76, (1967), Rensselaer Polytechnic Institute Troy, New York
[10] Lemke, C.E.; Howson, J.T., SIAM J. appl. math., 12, 2, 413-423, (1964)
[11] Mangasarian, O.L., SIAM J. appl. math., 12, 778-780, (1964)
[12] Murty, K.G., On the number of solutions to the complementary quadratic programming problem, () · Zbl 0169.51403
[13] Parsons, T.D., A combinatorial approach to convex quadratic programming, () · Zbl 0198.24503
[14] Samelson, H.; Thrall, R.M.; Wesler, O., Proc. amer. math. soc., 9, 805-807, (1958)
[15] Scarf, H.E., Equilibrium points of two person games and the Brouwer fixed point theorem (CF-51124) and the approximation of fixed points of a continuous map, (CF 216), Cowles foundation discussion papers, SIAM J. appl. math., 15, 1328-1343, (1967), Also · Zbl 0153.49401
[16] Singleton, A.W., Proc. London math. soc., 16, 519-536, (1966)
[17] Tucker, A.W., SIAM rev., 5, 305, (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.