×

zbMATH — the first resource for mathematics

The dual of an inequality of Hardy and Littlewood and some related inequalities. (English) Zbl 0246.30031

MSC:
30D55 \(H^p\)-classes (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Flett, T.M, A note on some inequalities, (), 7-15 · Zbl 0136.04102
[2] Flett, T.M, Mean values of power series, Pacific J. math., 25, 463-494, (1968) · Zbl 0162.10002
[3] Flett, T.M, Inequalities for the p-th Mean values of harmonic and subharmonic functions with p ⩽ 1, (), 249-275, (3) · Zbl 0217.10401
[4] Flett, T.M, A theorem concerning the real part of a power series, (), 135-143, Ohio · Zbl 0211.09401
[5] Flett, T.M, On the rate of growth of Mean values of holomorphic and harmonic functions, (), 749-768, (3) · Zbl 0211.39203
[6] Flett, T.M, Temperatures, Bessel potentials and Lipschitz spaces, (), 385-451, (3) · Zbl 0234.35032
[7] Gwilliam, A.E, On Lipschitz conditions, (), 353-364, (2) · Zbl 0013.06803
[8] Hardy, G.H; Littlewood, J.E, Some new properties of Fourier constants, Math. ann., 97, 159-209, (1926) · JFM 52.0267.01
[9] Hardy, G.H; Littlewood, J.E, Elementary theorems concerning power series with positive coefficients and moment constants of positive functions, J. für math., 157, 141-158, (1927) · JFM 53.0193.03
[10] Hardy, G.H; Littlewood, J.E, A convergence criterion for Fourier series, Math. Z., 28, 612-634, (1928) · JFM 54.0301.03
[11] Hardy, G.H; Littlewood, J.E, Some properties of conjugate functions, J. für math., 167, 405-423, (1931) · Zbl 0003.20203
[12] Hardy, G.H; Littlewood, J.E, Some properties of fractional integrals. II, Math. Z., 34, 403-439, (1932) · Zbl 0003.15601
[13] Hardy, G.H; Littlewood, J.E, Theorems concerning Mean values of analytic or harmonic functions, Quart. J. math., 12, 221-256, (1941) · Zbl 0060.21702
[14] Littlewood, J.E, Lectures on the theory of functions, (1944), Oxford · Zbl 0060.19906
[15] Mulholland, H.P, Some theorems on Dirichlet series with positive coefficients and related integrals, (), 281-292, (2) · JFM 55.0202.02
[16] Taibleson, M.H; Taibleson, M.H; Taibleson, M.H, On the theory of Lipschitz spaces of distributions on Euclidean n-space. III. smoothness and integrability of Fourier transforms, smoothness of convolution kernels, J. math. mech., J. math. mech., J. math. mech., 15, 973-981, (1966) · Zbl 0173.16103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.