zbMATH — the first resource for mathematics

Stability theory for an extensible beam. (English) Zbl 0247.73054

74G60 Bifurcation and buckling
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
45K05 Integro-partial differential equations
Full Text: DOI
[1] Ball, J.M., Initial-boundary value problems for an extensible beam, J. math. anal. appl., 42, 61-90, (1973) · Zbl 0254.73042
[2] Ball, J.M., Topological methods in the nonlinear analysis of beams, ()
[3] {\scN. Chafee and E. F. Infante}, A bifurcation problem for a nonlinear partial differential equation of parabolic type, J. Math. Appl. Anal., to appear. · Zbl 0296.35046
[4] Courant, R.; Hilbert, D., ()
[5] Dafermos, C.M., Uniform processes and semicontinuous Liapunov functionals, J. differential equations, 11, 401-415, (1972) · Zbl 0257.35006
[6] {\scR. W. Dickey}, Dynamic stability of equilibrium states of the extensible beam, to appear. · Zbl 0284.35047
[7] Dunford, N.; Schwartz, J., Linear operators, part I, (1958), Interscience Inc., New York
[8] Hale, J.K., Dynamical systems and stability, J. math. anal. appl., 26, 39-59, (1969) · Zbl 0179.13303
[9] Hsu, C.S., On dynamic stability of elastic bodies with prescribed initial conditions, Internat. J. engrg. sci., 4, 1-21, (1966) · Zbl 0233.73065
[10] Hsu, C.S., The effects of various parameters on the dynamic stability of a shallow arch, Trans. ASME ser. E appl. mech., 34, 349-358, (1967)
[11] Hsu, C.S., Equilibrium configurations of a shallow arch of arbitrary shape and their dynamic stability character, Internat. J. non-linear mech., 3, 113-136, (1968) · Zbl 0162.28401
[12] Hsu, C.S.; Hsu, C.S., Stability of shallow arches against snap-through under timewise step loads, Trans. ASME ser. E appl. mech., Trans. ASME ser. E appl. mech., 35, 618-620, (1968), and see discussion
[13] Huang, N.C.; Nachbar, W., Dynamic snap through of imperfect visco-elastic shallow arches, Trans. ASME ser. E appl. mech., 35, 289-297, (1968)
[14] Lefschetz, S., Differential equations: geometric theory, (1962), Wiley-Interscience New York · Zbl 0107.07101
[15] Lions, J.L., Quelques méthodes de résolution des problèmes aux limites non linéaires, (1969), Dunod Gauthier-Villars Paris · Zbl 0189.40603
[16] Lions, J.L.; Magenes, E., ()
[17] Mettler, E., Dynamic buckling, (), Chapter 62
[18] Mikhlin, S.G., Variational methods in mathematical physics, (1964), Pergamon Press London, (T. Boddington, Transl.) · Zbl 0119.19002
[19] Reiss, E.L., Column buckling—an elementary example of bifurcation, () · Zbl 0185.53002
[20] Reiss, E.L.; Matkowsky, B.J., Nonlinear dynamic buckling of a compressed elastic column, Quart. appl. math., 29, 245-260, (1971) · Zbl 0224.73064
[21] Slemrod, M., Asymptotic behaviour of a class of abstract dynamical systems, J. differential equations, 7, 584-600, (1970) · Zbl 0275.93023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.