×

zbMATH — the first resource for mathematics

The complementarity problem. (English) Zbl 0247.90058

MSC:
90C30 Nonlinear programming
15A39 Linear inequalities of matrices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R.W. Cottle, ”On a problem in linear inequalities,”Journal of the London Mathematical Society 43, 378–384. · Zbl 0181.04001
[2] R.W. Cottle, ”Nonlinear programs with positively bounded Jacobians,”SIAM Journal of Applied Math. 14, No. 1 (1966) 147–158. · Zbl 0158.18903 · doi:10.1137/0114012
[3] R.W. Cottie and G.B. Dantzig. ”Complementary Pivot theory of mathematical programming,”Linear Algebra and its Applications, 1 (1968) pp. 103–125. · Zbl 0155.28403 · doi:10.1016/0024-3795(68)90052-9
[4] R.W. Cottle and G.B. Dantzig, ”A generalization of the linear complementarity problem,”Journal of Combinatorial Theory (1969). · Zbl 0186.23806
[5] R.W. Cottle, A.J. Habetler and C.E. Lemke, ”On classes of copositive matrices,”Linear Algebra and its Applications, to appear. · Zbl 0196.05602
[6] R.W. Cottle, G.J. Habetler and C.E. Lemke, ”Quadratic forms semidefinite over convex cones,” In:Sixth International Mathematical Programming Symposium. Princeton, 1967 (Princeton University Press, 1971). · Zbl 0221.15018
[7] G.B. Dantzig and R.W. Cottle, ”Positive (semi) definite programming,” In:Nonlinear programming, Ed. J. Abadie (North-Holland, Amsterdam, 1967). pp. 55–73. · Zbl 0178.22801
[8] P. DuVal, ”The unloading problem for plane curves,”American Journal of Mathematics, 62 (1940) 307–317. · JFM 66.0785.03 · doi:10.2307/2371454
[9] B.C. Eaves, ”The linear complementarity problem in mathematical programming,” Tech. Report No. 69-4, July 1969, O.R. House, Stanford University.
[10] M. Fiedler and V. Ptak, ”Some generalizations of positive definiteness and monotonicity,”Numerische Mathematik 9 (1962) 163–172. · Zbl 0148.25801 · doi:10.1007/BF02166034
[11] V.M. Fridman and V.S. Chernina, ”An iteration process for the solution of the finitedimensional contact problem,”U.S.S.R. Computational Math. and Math. Physics 7, No. 1 (1967) 210–214. · Zbl 0191.15901 · doi:10.1016/0041-5553(67)90071-7
[12] P. Hartman and G. Stampacchia, ”On some nonlinear differential-functional equations,”Acta Math. 115 (1966) 271–310. · Zbl 0142.38102 · doi:10.1007/BF02392210
[13] D. Gale and H. Nikaido, ”The Jacobian matrix and global univalence of mappings,”Mathematische Annalen 159 (1965) 81–93. · Zbl 0158.04903 · doi:10.1007/BF01360282
[14] A.W. Ingleton, ”A problem in linear inequalities,”Proceedings of the London Mathematical Society, Third Series, 16 (1966) 519–536. · Zbl 0166.03005 · doi:10.1112/plms/s3-16.1.519
[15] S. Kakutani, ”A generalization of Brouwer’s fixed point theorem,”Duke Math. Journal 8 (1941) 457–459. · Zbl 0061.40304 · doi:10.1215/S0012-7094-41-00838-4
[16] S. Karamardian, ”Duality in mathematical programming,” ORC 66-2, January 1966. University of California, Berkeley.
[17] S. Karamardian, ”Existence of solutions of certain systems of nonlinear inequalities,”Numerische Mathematik 12 (1968) 327–334. · Zbl 0167.48203 · doi:10.1007/BF02162513
[18] S. Karamardian, ”The nonlinear complementarity problem with applications, Part I.”Journal of Optimization Theory and Applications 4, No. 2 (1969) 87–98. · Zbl 0169.06901 · doi:10.1007/BF00927414
[19] S. Karamardian, ”The nonlinear complementarity problem with applications, Part II”Journal of Optimization Theory and Applications 4, No. 3 (1969) 167 181. · Zbl 0169.51302
[20] C.E. Lemke, ”On complementary Pivot theory,”Math. of the Decision Sciences, American Mathematical Society, Eds. G.B. Dantzig and A.F. Veinott, Jr., (1968). · Zbl 0208.45502
[21] C.E. Lemke, ”Bimatrix equilibrium points and mathematical programming,”Management Science 11 (1965) 681–689. · Zbl 0139.13103 · doi:10.1287/mnsc.11.7.681
[22] C.E. Lemke and J.T. Howson, Jr., ”Equilibrium points of bimatrix games,”SIAM Journal 12, No. 2 (1964) 413–423. · Zbl 0128.14804
[23] J.L. Lions and G. Stampacchia, ”Variational inequalities,”Communications on Pure and Applied Math, 20, No. 3 (1967) 493–519. · Zbl 0152.34601 · doi:10.1002/cpa.3160200302
[24] K.G. Murty, ”On the number of solutions to the complementarity problem and spanning properties of complementary cones,” To appear in theJournal of Linear Algebra and its Applications. · Zbl 0241.90046
[25] H. Samelson, R.M. Thrall and O. Wesler, ”A partition theorem for Euclideann-space,”AMS Proceedings 9 (1958) 805–807. · Zbl 0117.37901
[26] H. Scarf, ”An algorithm for a class of nonconvex programming problems,” Cowles foundations discussion paper, No. 211, Yale University (July 1966).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.