zbMATH — the first resource for mathematics

Functions possessing restricted mean value properties. (English) Zbl 0251.31004

31B05 Harmonic, subharmonic, superharmonic functions in higher dimensions
60J45 Probabilistic potential theory
Full Text: DOI
[1] M. A. Akcoglu and R. W. Sharpe, Ergodic theory and boundaries, Trans. Amer. Math. Soc. 132 (1968), 447 – 460. · Zbl 0162.19402
[2] John R. Baxter, Restricted mean values and harmonic functions, Trans. Amer. Math. Soc. 167 (1972), 451 – 463. · Zbl 0238.31006
[3] Kai Lai Chung, The general theory of Markov processes according to Doeblin, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 230 – 254 (1964). · Zbl 0119.34604 · doi:10.1007/BF00533381 · doi.org
[4] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. II: Partial differential equations, (Vol. II by R. Courant.), Interscience Publishers (a division of John Wiley & Sons), New York-Lon don, 1962. · Zbl 0099.29504
[5] Марковские процессы, Государств. Издат. Физ.-Мат. Лит., Мосцощ, 1963 (Руссиан). · Zbl 0132.37701
[6] Hans Föllmer, Ein Littlewood-Kriterium für gleichmässig integrable Martingale und insbesondere für Dirichlet-Lösungen, Elliptische Differentialgleichungen, Band II, Akademie-Verlag, Berlin, 1971, pp. 113 – 117. Schriftenreihe Inst. Math. Deutsch. Akad. Wissensch. Berlin, Reihe A, Heft 8 (German, with English summary). · Zbl 0188.41902
[7] W. A. Veech, The core of a measurable set and a problem in potential theory (preprint).
[8] William A. Veech, A converse to Gauss’ theorem, Bull. Amer. Math. Soc. 78 (1972), 444 – 446. · Zbl 0235.31013
[9] -, A zero-one law for a class of random walks and a converse to Gauss’ mean value theorem (preprint). · Zbl 0282.60048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.