×

zbMATH — the first resource for mathematics

On the generation of semi-groups of linear operators. (English) Zbl 0252.47035

MSC:
47D03 Groups and semigroups of linear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] W. Feller, On the generation of unbounded semi-group of bounded linear operators, Ann.of Math., 58 (1953), 166-174. JSTOR: · Zbl 0050.34201 · doi:10.2307/1969826 · links.jstor.org
[2] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc Colloq. PubL, (1957). · Zbl 0078.10004 · www.ams.org
[3] I. Miyadera, On the generation of strongly ergodic semi-groups of operators, II, Thok Math. J., 6 (1954), 231-242. · Zbl 0059.10801 · doi:10.2748/tmj/1178245185
[4] S. Oharu, Semi-groups of linear operators in a Banach space, Publ. R. I. M. S. Kyot Univ., 7 (1971), 205-260. · Zbl 0234.47042 · doi:10.2977/prims/1195193542
[5] R. S. Phillips, An inversion formula for Laplace Transforms and semi-groups of linea operators, Ann. of Math., 59 (1954), 325-356. JSTOR: · Zbl 0059.10704 · doi:10.2307/1969697 · links.jstor.org
[6] R. S. Phillips, Semi-groups of operators, Bull. Amer. Math. Soc., 61 (1955), 16-33 · Zbl 0064.11201 · doi:10.1090/S0002-9904-1955-09854-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.